Cargando…

Numbers, sequences and series /

Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hirst, Keith E. (Keith Edwin)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Butterworth-Heinemann, 1995.
Colección:Modular mathematics series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn815471175
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 121008s1995 enk o 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d OCLCQ  |d N$T  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d AGLDB  |d INARC  |d OCLCQ  |d VTS  |d STF  |d BNG  |d M8D  |d VLY  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1162191318  |a 1241951127  |a 1300436416 
020 |a 9780080928586  |q (electronic bk.) 
020 |a 0080928587  |q (electronic bk.) 
020 |z 0340610433 
020 |z 9780340610435 
020 |a 1283619563 
020 |a 9781283619561 
020 |a 9786613932013 
020 |a 6613932019 
029 1 |a DEBSZ  |b 472763903 
029 1 |a DEBBG  |b BV043774311 
035 |a (OCoLC)815471175  |z (OCoLC)1162191318  |z (OCoLC)1241951127  |z (OCoLC)1300436416 
050 4 |a QA241  |b .H57 1995eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
082 0 4 |a 512.7  |2 20 
049 |a UAMI 
100 1 |a Hirst, Keith E.  |q (Keith Edwin) 
245 1 0 |a Numbers, sequences and series /  |c Keith E. Hirst. 
260 |a Oxford :  |b Butterworth-Heinemann,  |c 1995. 
300 |a 1 online resource (x, 198 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Modular mathematics series 
500 |a Includes index. 
505 0 |a Front Cover; Numbers, Sequences and Series; Copyright Page; Table of Contents; Series Preface; Preface; Chapter 1. Sets and Logic; 1.1 Symbolism; 1.2 Sets; 1.3 The logic of mathematical discourse; 1.4 Statements involving variables; 1.5 Statements involving more than one variable; 1.6 Equivalence relations; Summary; Exercises on Chapter 1; Chapter 2. The Integers; 2.1 Peano's Axioms; 2.2 Proof by mathematical induction; 2.3 Negative integers; 2.4 Division and the highest common factor; 2.5 The Euclidean Algorithm; 2.6 Digital representation; Summary; Exercises on Chapter 2 
505 8 |a Chapter 3. The Rational Numbers3.1 Solving equations; 3.2 Constructing the rational numbers; 3.3 Continued fractions; Summary; Exercises on Chapter 3; Chapter 4. Inequalities; 4.1 The basic rules for inequalities; 4.2 Solving inequalities graphically; 4.3 Solving inequalities algebraically; 4.4 A tabular approach to inequalities; 4.5 Increasing and decreasing functions; Summary; Exercises on Chapter 4; Chapter 5. The Real Numbers; 5.1 Gaps in the rational number system; 5.2 An historical interlude; 5.3 Bounded sets; 5.4 Arithmetic and algebra with real numbers; Summary; Exercises on Chapter 5 
505 8 |a Chapter 6. Complex Numbers6.1 Hamilton's definition; 6.2 The algebra of complex numbers; 6.3 The geometry of complex numbers; 6.4 Polar representation; 6.5 Euler's Formula; 6.6 The roots of unity; Summary; Exercises on Chapter 6; Chapter 7. Sequences; 7.1 Defining an infinite sequence; 7.2 Solving equations; 7.3 Limits of sequences; 7.4 Increasing and decreasing sequences; 7.5 Iteration; 7.6 Complex sequences; Summary; Exercises on Chapter 7; Chapter 8. Infinite Series; 8.1 Convergence; 8.2 Tests for convergence; 8.3 Series and integrals; 8.4 Complex series and absolute convergence 
505 8 |a 8.5 Power seriesSummary; Exercises on Chapter 8; Chapter 9. Decimals; 9.1 Infinite decimal expansions; 9.2 Periodic decimals; 9.3 Point nine recurring; Summary; Exercises on Chapter 9; Chapter 10. Further Developments; 10.1 Sets, logic and Boolean algebra; 10.2 Number theory and continued fractions; 10.3 Real numbers and more; 10.4 Complex numbers and beyond; 10.5 Sequences and series; 10.6 Decimals; Answers to Exercises; Index 
520 |a Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite proc. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 6 |a Mathématiques. 
650 6 |a Théorie des nombres. 
650 7 |a applied mathematics.  |2 aat 
650 7 |a mathematics.  |2 aat 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 7 |a Mathematics  |2 fast 
650 7 |a Number theory  |2 fast 
776 |z 0-340-61043-3 
830 0 |a Modular mathematics series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=574484  |z Texto completo 
938 |a Internet Archive  |b INAR  |n isbn_9780340610435 
938 |a ebrary  |b EBRY  |n ebr10606228 
938 |a EBSCOhost  |b EBSC  |n 574484 
938 |a YBP Library Services  |b YANK  |n 9753129 
994 |a 92  |b IZTAP