Cargando…

How to study for a mathematics degree /

Every year, thousands of students go to university to study mathematics (single honours or combined with another subject). Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathemati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alcock, Lara
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn815395639
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121030s2013 enka ob 001 0 eng d
010 |a  2012940939 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCF  |d DEBSZ  |d E7B  |d CDX  |d EBLCP  |d OCLCQ  |d JBG  |d MERUC  |d AGLDB  |d ICG  |d COCUF  |d CNNOR  |d LOA  |d K6U  |d ICA  |d LIP  |d PIFAG  |d FVL  |d OCLCQ  |d ESU  |d ZCU  |d BUF  |d D6H  |d OCLCQ  |d VTS  |d VT2  |d OCLCQ  |d WYU  |d STF  |d DKC  |d OCLCQ  |d M8D  |d S2H  |d OCLCQ  |d EZ9  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB269890  |2 bnb 
016 7 |a 016126315  |2 Uk 
019 |a 816042051  |a 818851547  |a 820850857  |a 980588457  |a 980849160  |a 991934251  |a 1006302695  |a 1055317686  |a 1066453369  |a 1081215753  |a 1117113922  |a 1193554652 
020 |a 9780191637360  |q (electronic bk.) 
020 |a 019163736X  |q (electronic bk.) 
020 |a 9781283713450 
020 |a 1283713454 
020 |a 0199661324 
020 |a 9780199661329 
020 |z 9780199661329  |q (pbk.) 
029 1 |a AU@  |b 000050636777 
029 1 |a DEBSZ  |b 379330903 
029 1 |a DEBSZ  |b 386877025 
029 1 |a DEBSZ  |b 445986336 
029 1 |a DEBSZ  |b 456511423 
029 1 |a DEBSZ  |b 489845916 
029 1 |a AU@  |b 000066766923 
035 |a (OCoLC)815395639  |z (OCoLC)816042051  |z (OCoLC)818851547  |z (OCoLC)820850857  |z (OCoLC)980588457  |z (OCoLC)980849160  |z (OCoLC)991934251  |z (OCoLC)1006302695  |z (OCoLC)1055317686  |z (OCoLC)1066453369  |z (OCoLC)1081215753  |z (OCoLC)1117113922  |z (OCoLC)1193554652 
037 |a 402595  |b MIL 
050 4 |a QA11.2  |b .A43 2012eb 
072 7 |a MAT  |x 030000  |2 bisacsh 
072 7 |a MAT  |2 eflch 
072 7 |a MAT  |2 ukslc 
072 7 |a JNMN  |2 bicssc 
072 7 |a JNZ  |2 bicssc 
072 7 |a PB  |2 bicssc 
072 7 |a YQM  |2 bicssc 
072 7 |a YQZ  |2 bicssc 
082 0 4 |a 510.711  |2 23 
049 |a UAMI 
100 1 |a Alcock, Lara. 
245 1 0 |a How to study for a mathematics degree /  |c Lara Alcock. 
260 |a Oxford :  |b Oxford University Press,  |c 2013. 
300 |a 1 online resource (xvi, 272 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from PDF title page (viewed on Oct. 30, 2012). 
504 |a Includes bibliographical references (pages 248-262) and index. 
505 0 |a Cover; Contents; Symbols; Introduction; Part 1 Mathematics; 1 Calculation Procedures; 1.1 Calculation at school and at university; 1.2 Decisions about and within procedures; 1.3 Learning from few (or no) examples; 1.4 Generating your own exercises; 1.5 Writing out calculations; 1.6 Checking for errors; 1.7 Mathematics is not just procedures; 2 Abstract Objects; 2.1 Numbers as abstract objects; 2.2 Functions as abstract objects; 2.3 What kind of object is that, really?; 2.4 Objects as the results of procedures; 2.5 Hierarchical organization of objects; 2.6 Turning processes into objects. 
505 8 |a 2.7 New objects: relations and binary operations2.8 New objects: symmetries; 3 Definitions; 3.1 Axioms, definitions and theorems; 3.2 What are axioms?; 3.3 What are definitions?; 3.4 What are theorems?; 3.5 Understanding definitions: even numbers; 3.6 Understanding definitions: increasing functions; 3.7 Understanding definitions: commutativity; 3.8 Understanding definitions: open sets; 3.9 Understanding definitions: limits; 3.10 Definitions and intuition; 4 Theorems; 4.1 Theorems and logical necessity; 4.2 A simple theorem about integers; 4.3 A theorem about functions and derivatives. 
505 8 |a 4.4 A theorem with less familiar objects4.5 Logical language: 'if '; 4.6 Logical language: everyday uses of 'if '; 4.7 Logical language: quantifiers; 4.8 Logical language: multiple quantifiers; 4.9 Theorem rephrasing; 4.10 Understanding: logical form and meaning; 5 Proof; 5.1 Proofs in school mathematics; 5.2 Proving that a definition is satisfied; 5.3 Proving general statements; 5.4 Proving general theorems using definitions; 5.5 Definitions and other representations; 5.6 Proofs, logical deductions and objects; 5.7 Proving obvious things. 
505 8 |a 5.8 Believing counterintuitive things: the harmonic series5.9 Believing counterintuitive things: Earth and rope; 5.10 Will my whole degree be proofs?; 6 Proof Types and Tricks; 6.1 General proving strategies; 6.2 Direct proof; 6.3 Proof by contradiction; 6.4 Proof by induction; 6.5 Uniqueness proofs; 6.6 Adding and subtracting the same thing; 6.7 Trying things out; 6.8 'I would never have thought of that'; 7 Reading Mathematics; 7.1 Independent reading; 7.2 Reading your lecture notes; 7.3 Reading for understanding; 7.4 Reading for synthesis; 7.5 Using summaries for revision. 
505 8 |a 7.6 Reading for memory7.7 Using diagrams for memory; 7.8 Reading proofs for memory; 8 Writing Mathematics; 8.1 Recognizing good writing; 8.2 Why should a student write well?; 8.3 Writing a clear argument; 8.4 Using notation correctly; 8.5 Arrows and brackets; 8.6 Exceptions and mistakes; 8.7 Separating out the task of writing; Part 2 Study Skills; 9 Lectures; 9.1 What are lectures like?; 9.2 What are lecturers like?; 9.3 Making lectures work for you; 9.4 Tackling common problems; 9.5 Learning in lectures; 9.6 Courtesy in lectures; 9.7 Feedback on lectures; 10 Other People. 
520 |a Every year, thousands of students go to university to study mathematics (single honours or combined with another subject). Many of these students are extremely intelligent and hardworking, but even the best will, at some point, struggle with the demands of making the transition to advanced mathematics. Some have difficulty adjusting to independent study and to learning from lectures. Other struggles, however, are more fundamental: the mathematics shifts in focus from calculation toproof, so students are expected to interact with it in different ways. These changes need not be mysterious - math. 
506 |a Limited Users and Download Restrictions may Apply, VLEbooks 1 User Licence. Available using University of Exeter Username and Password.  |5 GB-UKExU 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematics  |x Study and teaching (Higher) 
650 7 |a MATHEMATICS  |x Study & Teaching.  |2 bisacsh 
650 7 |a Mathematics  |x Study and teaching (Higher)  |2 fast 
776 0 8 |i Print version:  |z 9781283713450 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494631  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24434962 
938 |a Coutts Information Services  |b COUT  |n 24122028  |c 12.99 GBP 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1073506 
938 |a ebrary  |b EBRY  |n ebr10615767 
938 |a EBSCOhost  |b EBSC  |n 494631 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24122028 
938 |a YBP Library Services  |b YANK  |n 9888372 
994 |a 92  |b IZTAP