Cargando…

Lectures on random evolution /

Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the adv...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pinsky, Mark A., 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; River Edge, N.J. : World Scientific, Ã1991.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn813395946
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 121008s1991 si ob 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d N$T  |d EBLCP  |d E7B  |d DEBSZ  |d OCLCQ  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d OCLCQ  |d STF  |d LEAUB  |d UKAHL  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCQ 
019 |a 817818895 
020 |a 9789812779359  |q (electronic bk.) 
020 |a 9812779353  |q (electronic bk.) 
020 |a 128363564X 
020 |a 9781283635646 
020 |z 6613948101 
020 |z 9786613948106 
020 |z 9810205597 
020 |z 9789810205591 
029 1 |a AU@  |b 000051568615 
029 1 |a DEBBG  |b BV043124225 
029 1 |a DEBSZ  |b 379330253 
029 1 |a DEBSZ  |b 421330392 
035 |a (OCoLC)813395946  |z (OCoLC)817818895 
050 4 |a QA274 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
049 |a UAMI 
100 1 |a Pinsky, Mark A.,  |d 1940- 
245 1 0 |a Lectures on random evolution /  |c Mark A. Pinsky. 
260 |a Singapore ;  |a River Edge, N.J. :  |b World Scientific,  |c Ã1991. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references. 
520 |a Random evolution denotes a class of stochastic processes which evolve according to a rule which varies in time according to jumps. This is in contrast to diffusion processes, which assume that the rule changes continuously with time. Random evolutions provide a very flexible language, having the advantage that they permit direct numerical simulation-which is not possible for a diffusion process. Furthermore, they allow connections with hyperbolic partial differential equations and the kinetic theory of gases, which is impossible within the domain of diffusion proceses. They also posses great geometric invariance, allowing formulation on an arbitrary Riemannian manifold. In the field of stochastic stability, random evolutions furnish some easily computable models in which to study the Lyapunov exponent and rotation numbers of oscillators under the influence of noise. This monograph presents the various aspects of random evolution in an accessible and interesting format which will appeal to a large scientific audience. 
505 0 |a Ch. 0. Two-state random velocity model. 0.1. Two-state Markov chain -- 0.2. Random velocity model -- 0.3. Weak law and central limit theorem -- 0.4. Distribution functions of two-state model -- 0.5. Passage-time distributions -- 0.6. Asymptotic behavior with probability one -- ch. 1. Additive functionals of finite Markov chains. 1.1. Finite Markov chains -- 1.2. Asymptotic properties of the transition matrix -- 1.3. The weak law of large numbers and the central limit theorem -- 1.4. Recurrence properties -- 1.5. Limit theorems for discontinuous additive functionals -- 1.6. Proof of the Markov property -- ch. 2. General random evolutions. 2.1. Preliminaries on semigroups of operators -- 2.2. Construction of random evolution process -- 2.3. Discontinuous random evolutions -- 2.4. Limit theorems for random evolutions -- 2.5. Application to diffusion approximations -- 2.6. Martingale formulation of random evolution -- ch. 3. Applications to the Kinetic theory of gases. 3.1. Physical background -- 3.2. Stochastic solution of the linearized Boltzmann equation -- 3.3. Asymptotic analysis of the linearized Boltzmann equation -- ch. 4. Applications to isotropic transport on manifolds. 4.1. The Rayleigh problem of random flights -- 4.2. Isotropic transport process on a manifold -- 4.3. Applications to recurrence -- 4.4. Isotropic transport process of a frame field on a manifold -- ch. 5. Applications to stability of random oscillators. 5.1. Linear stochastic systems with multiplicative noise -- 5.2. Simple harmonic oscillator with small noise -- 5.3. Nilpotent linear systems with small noise. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic processes. 
650 0 |a Semigroups. 
650 2 |a Stochastic Processes 
650 6 |a Processus stochastiques. 
650 6 |a Semi-groupes. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Semigroups.  |2 fast  |0 (OCoLC)fst01112267 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=491510  |z Texto completo 
938 |a Internet Archive  |b INAR  |n lecturesonrandom0000pins 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24433076 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1044379 
938 |a ebrary  |b EBRY  |n ebr10607783 
938 |a EBSCOhost  |b EBSC  |n 491510 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 394810 
938 |a YBP Library Services  |b YANK  |n 9782155 
994 |a 92  |b IZTAP