Cargando…

Regularization methods in Banach spaces /

Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Schuster, Thomas, 1971-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, ©2012.
Colección:Radon series on computational and applied mathematics ; 10.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn812251485
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 120405s2012 gw a ob 001 0 eng d
010 |z  2012013065 
040 |a CDX  |b eng  |e pn  |c CDX  |d OCLCO  |d YDXCP  |d AZU  |d COO  |d N$T  |d E7B  |d OCLCQ  |d AUW  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d IDEBK  |d MHW  |d DEBBG  |d OCLCQ  |d AZK  |d AGLDB  |d MOR  |d PIFAG  |d OTZ  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d DEGRU  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d ICG  |d INT  |d NRAMU  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VLY  |d BRF  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 811964416  |a 812574193  |a 817816743  |a 961556941  |a 962690118  |a 988499060  |a 992097909  |a 995011086  |a 1037761943  |a 1038572869  |a 1045526048  |a 1058121946  |a 1058125936  |a 1062926507  |a 1081248125  |a 1148142997  |a 1162007062  |a 1228603370 
020 |a 9783110255720  |q (electronic bk.) 
020 |a 3110255723  |q (electronic bk.) 
020 |a 9783112204504  |q (set (print + e-book)) 
020 |a 3112204506  |q (set (print + e-book)) 
020 |a 1283627922 
020 |a 9781283627924 
020 |z 3110255243 
020 |z 9783110255249 
020 |a 9786613940377 
020 |a 6613940372 
024 8 |a 9786613940377 
029 1 |a AU@  |b 000051588835 
029 1 |a CHBIS  |b 010396680 
029 1 |a CHVBK  |b 331229641 
029 1 |a DEBBG  |b BV041905262 
029 1 |a DEBBG  |b BV043139497 
029 1 |a DEBBG  |b BV044164110 
029 1 |a DEBSZ  |b 397282672 
029 1 |a DEBSZ  |b 421326980 
029 1 |a DEBSZ  |b 428696902 
029 1 |a DEBSZ  |b 478281331 
029 1 |a NZ1  |b 15343682 
035 |a (OCoLC)812251485  |z (OCoLC)811964416  |z (OCoLC)812574193  |z (OCoLC)817816743  |z (OCoLC)961556941  |z (OCoLC)962690118  |z (OCoLC)988499060  |z (OCoLC)992097909  |z (OCoLC)995011086  |z (OCoLC)1037761943  |z (OCoLC)1038572869  |z (OCoLC)1045526048  |z (OCoLC)1058121946  |z (OCoLC)1058125936  |z (OCoLC)1062926507  |z (OCoLC)1081248125  |z (OCoLC)1148142997  |z (OCoLC)1162007062  |z (OCoLC)1228603370 
037 |a 394037  |b MIL 
050 4 |a QA322.2  |b .R44 2012eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
072 7 |a QA  |2 lcco 
082 0 4 |a 515/.732  |2 23 
049 |a UAMI 
245 0 0 |a Regularization methods in Banach spaces /  |c by Thomas Schuster [and others]. 
260 |a Berlin ;  |a Boston :  |b De Gruyter,  |c ©2012. 
300 |a 1 online resource (xi, 283 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Radon series on computational and applied mathematics,  |x 1865-3707 ;  |v 10 
504 |a Includes bibliographical references (pages 265-279) and index. 
505 0 |a Why to use Banach spaces in regularization theory? -- Geometry and mathematical tools of Banach spaces -- Tikhonov-type regularization -- Iterative regularization -- The method of approximate inverse. 
588 0 |a Print version record. 
520 |a Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the BV-norm have recently become very popular. Meanwhile the most well-known methods have been investigated for linear and nonlinear operator equations in Banach spaces. Motivated by these facts the authors aim at collecting and publishing these results in a monograph. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Banach spaces. 
650 0 |a Parameter estimation. 
650 0 |a Differential equations, Partial. 
650 4 |a Banach spaces. 
650 4 |a Iterative methods. 
650 4 |a Regularization theory. 
650 4 |a Tikhonov regularization. 
650 6 |a Espaces de Banach. 
650 6 |a Estimation d'un paramètre. 
650 6 |a Équations aux dérivées partielles. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Banach spaces  |2 fast 
650 7 |a Differential equations, Partial  |2 fast 
650 7 |a Parameter estimation  |2 fast 
650 7 |a Banach-Raum  |2 gnd 
650 7 |a Regularisierung  |2 gnd 
700 1 |a Schuster, Thomas,  |d 1971- 
776 0 8 |i Print version:  |z 9786613940377  |w (DLC) 2012013065 
830 0 |a Radon series on computational and applied mathematics ;  |v 10. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494131  |z Texto completo 
880 0 |6 505-00/(S  |a Contents note continued: 7.2.2. Convergence rates for the iteratively regularized Landweber iteration with a priori stopping rule -- 7.3. The iteratively regularized Gauss-Newton method -- 7.3.1. Convergence with a priori parameter choice -- 7.3.2. Convergence with a posteriori parameter choice -- 7.3.3. Numerical illustration -- V. The method of approximate inverse -- 8. Setting of the method -- 9. Convergence analysis in Lp(Ω) and C(K) -- 9.1. The case X = Lp(Ω) -- 9.2. The case X = C(K) -- 9.3. An application to X-ray diffractometry -- 10.A glimpse of semi-discrete operator equations. 
938 |a YBP Library Services  |b YANK  |n 9753327 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 394037 
938 |a EBSCOhost  |b EBSC  |n 494131 
938 |a ebrary  |b EBRY  |n ebr10606482 
938 |a De Gruyter  |b DEGR  |n 9783110255720 
938 |a Coutts Information Services  |b COUT  |n 23523174 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25310983 
994 |a 92  |b IZTAP