Cargando…

Geometry of crystallographic groups /

Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. They got their name, because in three dimensions they occur as the symmetry groups of a crystal (which we imagine to extend to infinity in all directions). The book is divided into tw...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Szczepański, Andrzej
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific, ©2012.
Colección:Algebra and discrete mathematics (World Scientific (Firm)) ; v. 4.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn811820797
003 OCoLC
005 20231017213018.0
006 m o d
007 cr mn|||||||||
008 121004s2012 si a ob 001 0 eng d
040 |a HKP  |b eng  |e pn  |c HKP  |d OCLCO  |d YDXCP  |d IDEBK  |d N$T  |d EBLCP  |d CDX  |d STF  |d OCLCF  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d AGLDB  |d VGM  |d OCLCQ  |d MERUC  |d ZCU  |d U3W  |d OCLCQ  |d VTS  |d ICG  |d INT  |d WYU  |d OCLCQ  |d YOU  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d SFB  |d AJS  |d OCLCO  |d OCLCQ 
019 |a 813396034  |a 817819021  |a 1086509379 
020 |a 9789814412261  |q (electronic bk.) 
020 |a 9814412260  |q (electronic bk.) 
020 |a 1283635984 
020 |a 9781283635981 
020 |z 9814412252 
020 |z 9789814412254 
020 |z 6613948446 
020 |z 9786613948441 
029 1 |a AU@  |b 000054190050 
029 1 |a DEBBG  |b BV043138782 
029 1 |a DEBBG  |b BV044168977 
029 1 |a DEBSZ  |b 421330465 
029 1 |a DEBSZ  |b 456509399 
035 |a (OCoLC)811820797  |z (OCoLC)813396034  |z (OCoLC)817819021  |z (OCoLC)1086509379 
050 4 |a QD462.6.S94 
072 7 |a PBWH  |2 bicssc 
072 7 |a SCI  |x 016000  |2 bisacsh 
082 0 4 |a 548/.81  |2 23 
049 |a UAMI 
100 1 |a Szczepański, Andrzej. 
245 1 0 |a Geometry of crystallographic groups /  |c Andrzej Szczepański. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific,  |c ©2012. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Algebra and discrete mathematics ;  |v vol. 4 
504 |a Includes bibliographical references and index. 
520 |a Crystallographic groups are groups which act in a nice way and via isometries on some n-dimensional Euclidean space. They got their name, because in three dimensions they occur as the symmetry groups of a crystal (which we imagine to extend to infinity in all directions). The book is divided into two parts. In the first part, the basic theory of crystallographic groups is developed from the very beginning, while in the second part, more advanced and more recent topics are discussed. So the first part of the book should be usable as a textbook, while the second part is more interesting to researchers in the field. There are short introductions to the theme before every chapter. At the end of this book is a list of conjectures and open problems. Moreover there are three appendices. The last one gives an example of the torsion free crystallographic group with a trivial center and a trivial outer automorphism group. This volume omits topics about generalization of crystallographic groups to nilpotent or solvable world and classical crystallography. We want to emphasize that most theorems and facts presented in the second part are from the last two decades. This is after the book of L Charlap "Bieberbach groups and flat manifolds" was published. 
505 0 |a 1. Definitions. 1.1. Exercises -- 2. Bieberbach Theorems. 2.1. The first Bieberbach Theorem. 2.2. Proof of the second Bieberbach Theorem. 2.3. Proof of the third Bieberbach Theorem. 2.4. Exercises -- 3. Classification methods. 3.1. Three methods of classification. 3.2. Classification in dimension two. 3.3. Platycosms. 3.4. Exercises -- 4. Flat manifolds with b[symbol] = 0. 4.1. Examples of (non)primitive groups. 4.2. Minimal dimension. 4.3. Exercises -- 5. Outer automorphism groups. 5.1. Some representation theory and 9-diagrams. 5.2. Infinity of outer automorphism group. 5.3. R[symbol]-groups. 5.4. Exercises -- 6. Spin structures and Dirac operator. 6.1. Spin(n) group. 6.2. Vector bundles. 6.3. Spin structure. 6.4. The Dirac operator. 6.5. Exercises -- 7. Flat manifolds with complex structures. 7.1. Kahler flat manifolds in low dimensions. 7.2. The Hodge diamond for Kahler flat manifolds. 7.3. Exercises -- 8. Crystallographic groups as isometries of H[symbol]. 8.1. Hyperbolic space H[symbol]. 8.2. Exercises -- 9. Hantzsche-Wendt groups. 9.1. Definitions. 9.2. Non-oriented GHW groups. 9.3. Graph connecting GHW manifolds. 9.4. Abelianization of HW group. 9.5. Relation with Fibonacci groups. 9.6. An invariant of GHW. 9.7. Complex Hantzsche-Wendt manifolds. 9.8. Exercises -- 10. Open problems. 10.1. The classification problems. 10.2. The Anosov relation for flat manifolds. 10.3. Generalized Hantzsche-Wendt flat manifolds. 10.4. Flat manifolds and other geometries. 10.5. The Auslander conjecture. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Symmetry groups. 
650 0 |a Crystallography, Mathematical. 
650 6 |a Groupes symétriques. 
650 6 |a Cristallographie mathématique. 
650 7 |a SCIENCE  |x Physics  |x Crystallography.  |2 bisacsh 
650 7 |a Crystallography, Mathematical.  |2 fast  |0 (OCoLC)fst00884665 
650 7 |a Symmetry groups.  |2 fast  |0 (OCoLC)fst01140824 
776 1 |z 9789814412254 
830 0 |a Algebra and discrete mathematics (World Scientific (Firm)) ;  |v v. 4. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=491503  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26871047 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24465528 
938 |a Coutts Information Services  |b COUT  |n 24024676 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1044407 
938 |a EBSCOhost  |b EBSC  |n 491503 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 394844 
938 |a YBP Library Services  |b YANK  |n 9782187 
994 |a 92  |b IZTAP