Cargando…

Advances in time series forecasting /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Aladag, Cagdas Hakan, Eǧrioǧlu, Erol
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Oak Park, Ill.] : Bentham eBooks, [2012]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn811405863
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 120820s2012 iluad ob 001 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d N$T  |d OCLCF  |d YDXCP  |d OCLCQ  |d AZK  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d STF  |d WRM  |d VTS  |d NRAMU  |d CRU  |d OCLCQ  |d VT2  |d WYU  |d OCLCQ  |d UKCRE  |d UKAHL  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 961522539  |a 962716380  |a 974766267  |a 974856316  |a 1045400027  |a 1048233815  |a 1048747000  |a 1055352000  |a 1081201334  |a 1087368505  |a 1153551361  |a 1228528441 
020 |a 9781608053735  |q (electronic bk.) 
020 |a 1608053733  |q (electronic bk.) 
020 |z 9781608055227 
029 1 |a AU@  |b 000052939004 
029 1 |a CHNEW  |b 000636331 
029 1 |a DEBBG  |b BV043064984 
029 1 |a DEBSZ  |b 421313919 
029 1 |a NZ1  |b 15196213 
035 |a (OCoLC)811405863  |z (OCoLC)961522539  |z (OCoLC)962716380  |z (OCoLC)974766267  |z (OCoLC)974856316  |z (OCoLC)1045400027  |z (OCoLC)1048233815  |z (OCoLC)1048747000  |z (OCoLC)1055352000  |z (OCoLC)1081201334  |z (OCoLC)1087368505  |z (OCoLC)1153551361  |z (OCoLC)1228528441 
050 4 |a QA280  |b .A38 2012eb 
072 7 |a MAT  |x 029050  |2 bisacsh 
082 0 4 |a 519.5/5  |2 23 
049 |a UAMI 
245 0 0 |a Advances in time series forecasting /  |c editor, Cagdas Hakan Aladag ; co-editor, Erol Eǧrioǧlu. 
260 |a [Oak Park, Ill.] :  |b Bentham eBooks,  |c [2012] 
300 |a 1 online resource (iii, 135 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references and indexes. 
505 0 |a pt. 1. Time series forecasting using ANN -- pt. 2. Fuzzy time series -- pt. 3. Hybrid methods. 
520 8 |a Annotation  |b Time series analysis is applicable in a variety of disciplines such as business administration, economics, public finances, engineering, statistics, econometrics, mathematics and actuarial sciences. Forecasting the future assists in critical organizational planning activities. Time series analysis is employed by many different organizations such as hospitals, universities, commercial enterprises or government organizations in order to forecast future scenarios. Therefore, many time series forecasting methods have been proposed and improved in statistical literature. Linear models such as Box-Jenkins methods were earlier used in many situations. Then, to overcome the restrictions of these linear models and to account for certain nonlinear patterns observed in real problems, some nonlinear models are also presented in literature. However, since these nonlinear models were developed for specific nonlinear patterns, they are not suitable for modeling other types of nonlinearity in time series. In recent years, efficient advanced techniques such as artificial neural networks, fuzzy time series and some hybrid models have been used to forecast any kind of real life time series. Both theoretical and empirical findings in academic literature show that these approaches give comparatively reliable forecasts than those obtained from conventional forecasting methods. In addition, conventional models require some assumptions such as linearity and normal distribution or cannot be utilized efficiently for some real time series such as temperature and share prices of stockholders since this kind of series contain some uncertainty in itself. However, when advanced methods such as neural networks and fuzzy time series are used to forecast time series, there is no need to satisfy any assumption and the time series contain uncertainty can be forecasted efficiently. This e-book contains recent effective applications and descriptions of these advanced forecasting methods. Readers will learn how these methods work and how these approaches can be used to forecast real life time series. In addition, the hybrid forecasting model approach, which combines different methods to obtain better forecast results, is also explained. Readers can also find the applications of hybrid forecasting models in this e-book. This e-book also enables skilled statisticians to create a new hybrid forecasting model suitable for their own objectives. Data presented in this e-book is problem based and is taken from real life situations. This e-book is a valuable resource for students, statisticians and working professionals interested in advanced time series analysis. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Time-series analysis. 
650 6 |a Série chronologique. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Time Series.  |2 bisacsh 
650 7 |a Time-series analysis  |2 fast 
700 1 |a Aladag, Cagdas Hakan. 
700 1 |a Eǧrioǧlu, Erol. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=500676  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37537187 
938 |a ebrary  |b EBRY  |n ebr10587894 
938 |a EBSCOhost  |b EBSC  |n 500676 
938 |a YBP Library Services  |b YANK  |n 9568555 
994 |a 92  |b IZTAP