Cargando…

An introduction to Lorentz surfaces /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weinstein, Tilla, 1934-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; New York : Walter de Gruyter, 1996.
Colección:De Gruyter expositions in mathematics ; 22.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Introduction
  • Chapter 1. Null lines on Lorentz surfaces
  • Â 1.1. Scalar products and causal character
  • Â 1.2. Metrics and null direction fields
  • Â 1.3. Lorentz surfaces and proper null coordinates
  • Â 1.4. A first look at null lines
  • Â 1.5. The Euclidean plane E2 and the Minkowski plane E21
  • Chapter 2. Box surfaces, yardsticks and global properties of Lorentzian metrics
  • Â 2.1. The one-one correspondence between box surfaces and Lorentz surfaces
  • Â 2.2. Yardsticks and time-orientability
  •  2.3. Intrinsic curvature and a first look at the example in our logo 2.4. Geodesics and pregeodesics
  • Â 2.5. Completeness, inextendibility, and causality conditions
  • Chapter 3. Conformal equivalence and the Poincaré index
  • Â 3.1. Definitions of conformal equivalence
  • Â 3.2. Cj conformally equivalent Lorentz surfaces need not be Cj+1 conformally equivalent
  •  3.3. The Poincaré index
  •  3.4. The Poincaré Index Theorem
  • Chapter 4 Kulkarniâ€?s conformal boundary
  • Â 4.1. Ideal endpoints
  • Â 4.2. The points on the conformal boundary
  •  4.3. The topology on the conformal boundary 4.4. Some properties of the conformal boundary
  • Chapter 5 Using the conformal boundary
  • Â 5.1. The foliations X and Y
  • Â 5.2. Spans on â??
  • Â 5.3. A special â??+ chart on the span of a null curve
  • Â 5.4. Characterization of C0 smoothability of the conformal boundary
  •  5.5. Kulkarniâ€?s use of the conformal boundary
  • Chapter 6. Conformal invariants on Lorentz surfaces
  • Â 6.1. Conformal indices on an arbitrary Lorentz surface
  •  6.2. Conformal indices associated with â??â?? and more properties of â??â?? 6.3. Some notions of symmetry
  •  6.4. Smythâ€?s digraph, determining sets and some other conformal invariants
  • Chapter 7. Classical surface theory and harmonically immersed surfaces
  • Â 7.1. A quick review of local surface theory in Euclidean 3-space
  • Â 7.2. A quick review of local surface theory in Minkowski 3-space
  • Â 7.3. Contrasting the behavior of surfaces in E3 and E3,1
  • Â 7.4. The Hilbert-Holmgren theorem for harmonically immersed surfaces
  • Chapter 8. Conformal realization of Lorentz surfaces in Minkowski 3-space 8.1. Entire timelike minimal surfaces in E3,1
  • Â 8.2. Associate families of minimal surfaces
  • Â 8.3. Some conformal realizations of Lorentz surfaces in E3,1
  • Â 8.4. Some last remarks on conformal imbeddings and immersions
  • Bibliography
  • Index