An introduction to Lorentz surfaces /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin ; New York :
Walter de Gruyter,
1996.
|
Colección: | De Gruyter expositions in mathematics ;
22. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction
- Chapter 1. Null lines on Lorentz surfaces
- Â 1.1. Scalar products and causal character
- Â 1.2. Metrics and null direction fields
- Â 1.3. Lorentz surfaces and proper null coordinates
- Â 1.4. A first look at null lines
- Â 1.5. The Euclidean plane E2 and the Minkowski plane E21
- Chapter 2. Box surfaces, yardsticks and global properties of Lorentzian metrics
- Â 2.1. The one-one correspondence between box surfaces and Lorentz surfaces
- Â 2.2. Yardsticks and time-orientability
-  2.3. Intrinsic curvature and a first look at the example in our logo 2.4. Geodesics and pregeodesics
- Â 2.5. Completeness, inextendibility, and causality conditions
- Chapter 3. Conformal equivalence and the Poincaré index
- Â 3.1. Definitions of conformal equivalence
- Â 3.2. Cj conformally equivalent Lorentz surfaces need not be Cj+1 conformally equivalent
-  3.3. The Poincaré index
-  3.4. The Poincaré Index Theorem
- Chapter 4 Kulkarni�s conformal boundary
- Â 4.1. Ideal endpoints
- Â 4.2. The points on the conformal boundary
-  4.3. The topology on the conformal boundary 4.4. Some properties of the conformal boundary
- Chapter 5 Using the conformal boundary
- Â 5.1. The foliations X and Y
- Â 5.2. Spans on â??
- Â 5.3. A special â??+ chart on the span of a null curve
- Â 5.4. Characterization of C0 smoothability of the conformal boundary
-  5.5. Kulkarni�s use of the conformal boundary
- Chapter 6. Conformal invariants on Lorentz surfaces
- Â 6.1. Conformal indices on an arbitrary Lorentz surface
-  6.2. Conformal indices associated with â??â?? and more properties of â??â?? 6.3. Some notions of symmetry
-  6.4. Smyth�s digraph, determining sets and some other conformal invariants
- Chapter 7. Classical surface theory and harmonically immersed surfaces
- Â 7.1. A quick review of local surface theory in Euclidean 3-space
- Â 7.2. A quick review of local surface theory in Minkowski 3-space
- Â 7.3. Contrasting the behavior of surfaces in E3 and E3,1
- Â 7.4. The Hilbert-Holmgren theorem for harmonically immersed surfaces
- Chapter 8. Conformal realization of Lorentz surfaces in Minkowski 3-space 8.1. Entire timelike minimal surfaces in E3,1
- Â 8.2. Associate families of minimal surfaces
- Â 8.3. Some conformal realizations of Lorentz surfaces in E3,1
- Â 8.4. Some last remarks on conformal imbeddings and immersions
- Bibliography
- Index