Cargando…

Probability theory /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bauer, Heinz, 1928-
Otros Autores: Burckel, Robert B.
Formato: Electrónico eBook
Idioma:Inglés
Alemán
Publicado: Berlin ; New York : Walter de Gruyter, 1996.
Colección:De Gruyter studies in mathematics ; 23.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 23 Uniqueness and Continuity Theorems24 Normal distribution and independence; 25 Differentiability of Fourier transforms; 26 Continuous mappings into the circle; Chapter VI Limit Distributions; 27 Examples of limit theorems; 28 The Central Limit Theorem; 29 Infinitely divisible distributions; 30 Gauss measures and multi-dimensional central limit theorem; Chapter VII Law of the Iterated Logarithm; 31 Posing the question and elementary preparations; 32 Probabilistic preparations; 33 Strassen's theorem of the iterated logarithm; 34 Supplements.
  • 49 Optional times and optional sampling50 The strong Markov property; 51 Prospectus; Bibliography; Symbol Index; Name Index; General Index.
  • 9 Infinite products of probability spacesChapter III Laws of Large Numbers; 10 Posing the question; 11 Zero-one laws; 12 Strong Law of Large Numbers; 13 Applications; 14 Almost sure convergence of infinite series; Chapter IV Martingales; 15 Conditional expectations; 16 Martingales
  • definition and examples; 17 Transformation via optional times; 18 Inequalities for supermartingales; 19 Convergence theorems; 20 Applications; Chapter V Fourier Analysis; 21 Integration of complex-valued functions; 22 Fourier transformation and characteristic functions.
  • Chapter VIII Construction of Stochastic Processes35 Projective limits of probability measures; 36 Kernels and semigroups of kernels; 37 Processes with stationary and independent increments; 38 Processes with pre-assigned path-set; 39 Continuous modifications; 40 Brownian motion as a stochastic process; 41 Poisson processes; 42 Markov processes; 43 Gauss processes; 44 Conditional distributions; Chapter IX Brownian Motion; 45 Brownian motion with filtration and martingales; 46 Maximal inequalities for martingales; 47 Behavior of Brownian paths; 48 Examples of stochastic integrals.