|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn811372212 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
950817s1995 gw ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCO
|d N$T
|d OCLCF
|d DEBBG
|d IDEBK
|d YDXCP
|d EBLCP
|d OCLCQ
|d COO
|d OCLCQ
|d DEBSZ
|d UIU
|d AGLDB
|d OCLCQ
|d STF
|d OCLCQ
|d VLY
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 867075768
|a 922943486
|a 992817082
|a 1162038941
|
020 |
|
|
|a 9783110813548
|q (electronic bk.)
|
020 |
|
|
|a 3110813548
|q (electronic bk.)
|
020 |
|
|
|a 1306275261
|q (ebk)
|
020 |
|
|
|a 9781306275262
|q (ebk)
|
020 |
|
|
|z 3110146320
|
020 |
|
|
|z 9783110146325
|
024 |
7 |
|
|a 10.1515/9783110813548
|2 doi
|
029 |
1 |
|
|a DEBBG
|b BV042350463
|
029 |
1 |
|
|a DEBBG
|b BV043774209
|
029 |
1 |
|
|a DEBSZ
|b 472761102
|
029 |
1 |
|
|a DEBSZ
|b 478284551
|
035 |
|
|
|a (OCoLC)811372212
|z (OCoLC)867075768
|z (OCoLC)922943486
|z (OCoLC)992817082
|z (OCoLC)1162038941
|
037 |
|
|
|a 558777
|b MIL
|
050 |
|
4 |
|a QC20.7.G44
|b N39 1995eb
|
072 |
|
7 |
|a MAT
|x 037000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.72
|2 20
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Nazaĭkinskiĭ, V. E.
|
245 |
1 |
0 |
|a Methods of noncommutative analysis :
|b theory and applications /
|c Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin.
|
260 |
|
|
|a Berlin ;
|a New York :
|b Walter de Gruyter,
|c 1995.
|
300 |
|
|
|a 1 online resource (x, 373 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter studies in mathematics ;
|v 22
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Preface -- I Elementary Notions of Noncommutative Analysis -- 1 Some Situations where Functions of Noncommuting Operators Arise -- 1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials -- 1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators -- 1.3 Differential and Integral Operators -- 1.4 Problems of Perturbation Theory -- 1.5 Multiplication Law in Lie Groups -- 1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator -- 1.7 T-Exponentials, Trotter Formulas, and Path Integrals
|
505 |
8 |
|
|a 2 Functions of Noncommuting Operators: the Construction and Main Properties2.1 Motivations -- 2.2 The Definition and the Uniqueness Theorem -- 2.3 Basic Properties -- 2.4 Tempered Symbols and Generators of Tempered Groups -- 2.5 The Influence of the Symbol Classes on the Properties of Generators -- 2.6 Weyl Quantization -- 3 Noncommutative Differential Calculus -- 3.1 The Derivation Formula -- 3.2 The Daletskii-Krein Formula -- 3.3 Higher-Order Expansions -- 3.4 Permutation of Feynman Indices -- 3.5 The Composite Function Formula
|
505 |
8 |
|
|a 4 The Campbell-Hausdorff Theorem and Dynkin�s Formula4.1 Statement of the Problem -- 4.2 The Commutation Operation -- 4.3 A Closed Formula for In (eBeA) -- 4.4 A Closed Formula for the Logarithm of a T-Exponential -- 5 Summary: Rules of “Operator Arithmetic� and Some Standard Techniques -- 5.1 Notation -- 5.2 Rules -- 5.3 Standard Techniques -- II Method of Ordered Representation -- 1 Ordered Representation: Definition and Main Property -- 1.1 Wick Normal Form -- 1.2 Ordered Representation and Theorem on Products -- 1.3 Reduction to Normal Form
|
505 |
8 |
|
|a 2 Some Examples2.1 Functions of the Operators x and â€? ihÓ?/dÓ? -- 2.2 Perturbed Heisenberg Relations -- 2.3 Examples of Nonlinear Commutation Relations -- 2.4 Lie Commutation Relations -- 2.5 Graded Lie Algebras -- 3 Evaluation of the Ordered Representation Operators -- 3.1 Equations for the Ordered Representation Operators -- 3.2 How to Obtain the Solution -- 3.3 Semilinear Commutation Relations -- 4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem -- 4.1 Ordered Representation of Relation Systems and the Jacobi Condition
|
505 |
8 |
|
|a 4.2 The Poincaré-Birkhoff-Witt Theorem4.3 Verification of the Jacobi Condition: Two Examples -- 5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation -- 6 Representations of Lie Groups and Functions of Their Generators -- 6.1 Conditions on the Representation -- 6.2 Hilbert Scales -- 6.3 Symbol Spaces -- 6.4 Symbol Classes: More Suitable for Asymptotic Problems -- III Noncommutative Analysis and Differential Equations -- 1 Preliminaries -- 1.1 Heaviside�s Operator Method for Differential Equations with Constant Coefficients
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
0 |
|a Noncommutative algebras.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
6 |
|a Algèbres non commutatives.
|
650 |
|
6 |
|a Physique mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x Functional Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Differential
|2 fast
|
650 |
|
7 |
|a Mathematical physics
|2 fast
|
650 |
|
7 |
|a Noncommutative algebras
|2 fast
|
700 |
1 |
|
|a Shatalov, V. E.
|q (Viktor Evgenʹevich)
|
700 |
1 |
|
|a Sternin, B. I͡U.
|
776 |
0 |
8 |
|i Print version:
|z 9781306275262
|
830 |
|
0 |
|a De Gruyter studies in mathematics ;
|v 22.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3040539
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10588328
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 560593
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis27169796
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9591972
|
994 |
|
|
|a 92
|b IZTAP
|