Cargando…

A comprehensive course in number theory /

"Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Baker, Alan, 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [UK] ; New York : Cambridge University Press, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn810931535
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120924t20122012enka ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d COO  |d YDXCP  |d IDEBK  |d OCLCQ  |d OSU  |d ORU  |d OCLCF  |d CDX  |d CAMBR  |d MHW  |d EBLCP  |d DEBSZ  |d MEAUC  |d OCLCQ  |d HEBIS  |d OCLCQ  |d CUT  |d OCLCO  |d OCLCQ  |d NJR  |d OCLCQ  |d UAB  |d UUM  |d OCLCQ  |d AU@  |d OCLCQ  |d WYU  |d UKAHL  |d OCLCQ  |d S8J  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M 
066 |c (S 
019 |a 810531577  |a 811502329  |a 812521315  |a 817813733  |a 819631585  |a 956653830  |a 1065913548 
020 |a 9781139552165 
020 |a 1139552163 
020 |a 9781139549660  |q (electronic bk.) 
020 |a 1139549669  |q (electronic bk.) 
020 |a 128361085X 
020 |a 9781283610858 
020 |a 9781139093835  |q (electronic bk.) 
020 |a 1139093835  |q (electronic bk.) 
020 |z 9781107019010  |q (hardback) 
020 |z 110701901X  |q (hardback) 
020 |z 9781107603790 
020 |z 110760379X 
020 |a 9781139554626 
020 |a 113955462X 
024 8 |a 9786613923301 
029 1 |a DEBSZ  |b 379329581 
029 1 |a DEBSZ  |b 445574135 
029 1 |a NLGGC  |b 347880746 
029 1 |a AU@  |b 000058369209 
035 |a (OCoLC)810931535  |z (OCoLC)810531577  |z (OCoLC)811502329  |z (OCoLC)812521315  |z (OCoLC)817813733  |z (OCoLC)819631585  |z (OCoLC)956653830  |z (OCoLC)1065913548 
037 |a 392330  |b MIL 
050 4 |a QA241  |b .B237 2012eb 
072 7 |a MAT  |x 022000  |2 bisacsh 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT  |2 eflch 
082 0 4 |a 512.7  |2 23 
084 |a MAT022000  |2 bisacsh 
049 |a UAMI 
100 1 |a Baker, Alan,  |d 1939-  |e author. 
245 1 2 |a A comprehensive course in number theory /  |c Alan Baker. 
264 1 |a Cambridge [UK] ;  |a New York :  |b Cambridge University Press,  |c 2012. 
264 4 |c ©2012 
300 |a 1 online resource (xv, 251 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy-Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies"--  |c Provided by publisher. 
504 |a Includes bibliographical references (pages 240-245) and index. 
588 0 |a Print version record. 
505 0 |a Divisibility -- Arithmetical functions -- Congruences -- Quadratic residues -- Quadratic forms -- Diophantine approximation -- Quadratic fields -- Diophantine equations -- Factorization and primality testing -- Number fields -- Ideals -- Units and ideal classes -- Analytic number theory -- On the zeros of the zeta-function -- On the distribution of the primes -- The sieve and circle methods -- Elliptic curves. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Number theory  |v Textbooks. 
650 7 |a MATHEMATICS  |x Number Theory.  |2 bisacsh 
650 0 7 |a Números , Teoría de  |2 embucm 
650 7 |a Number theory  |2 fast 
650 7 |a Zahlentheorie  |2 gnd 
655 7 |a Textbooks  |2 fast 
776 0 8 |i Print version:  |a Baker, Alan, 1939-  |t Comprehensive course in number theory.  |d Cambridge, UK ; New York : Cambridge University Press, 2012  |z 9781107019010  |w (DLC) 2012013414  |w (OCoLC)792941483 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=473241  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- A Comprehensive Course in Number Theory -- Title -- Copyright -- Contents -- Preface -- Introduction -- Gauss and Number Theory -- 1 Divisibility -- 1.1 Foundations -- 1.2 Division algorithm -- 1.3 Greatest common divisor -- 1.4 Euclid's algorithm -- 1.5 Fundamental theorem -- 1.6 Properties of the primes -- 1.7 Further reading -- 1.8 Exercises -- 2 Arithmetical functions -- 2.1 The function [x] -- 2.2 Multiplicative functions -- 2.3 Euler's (totient) function ø(n) -- 2.4 The Möbius function μ(n) -- 2.5 The functions τ(n) and σ(n) -- 2.6 Average orders -- 2.7 Perfect numbers -- 2.8 The Riemann zeta-function -- 2.9 Further reading -- 2.10 Exercises -- 3 Congruences -- 3.1 Definitions -- 3.2 Chinese remainder theorem -- 3.3 The theorems of Fermat and Euler -- 3.4 Wilson's theorem -- 3.5 Lagrange's theorem -- 3.6 Primitive roots -- 3.7 Indices -- 3.8 Further reading -- 3.9 Exercises -- 4 Quadratic residues -- 4.1 Legendre's symbol -- 4.2 Euler's criterion -- 4.3 Gauss' lemma -- 4.4 Law of quadratic reciprocity -- 4.5 Jacobi's symbol -- 4.6 Further reading -- 4.7 Exercises -- 5 Quadratic forms -- 5.1 Equivalence -- 5.2 Reduction -- 5.3 Representations by binary forms -- 5.4 Sums of two squares -- 5.5 Sums of four squares -- 5.6 Further reading -- 5.7 Exercises -- 6 Diophantine approximation -- 6.1 Dirichlet's theorem -- 6.2 Continued fractions -- 6.3 Rational approximations -- 6.4 Quadratic irrationals -- 6.5 Liouville's theorem -- 6.6 Transcendental numbers -- 6.7 Minkowski's theorem -- 6.8 Further reading -- 6.9 Exercises -- 7 Quadratic fields -- 7.1 Algebraic number fields -- 7.2 The quadratic field -- 7.3 Units -- 7.4 Primes and factorization -- 7.5 Euclidean fields -- 7.6 The Gaussian field -- 7.7 Further reading -- 7.8 Exercises -- 8 Diophantine equations -- 8.1 The Pell equation -- 8.2 The Thue equation -- 8.3 The Mordell equation. 
880 8 |6 505-00/(S  |a 8.4 The Fermat equation -- 8.5 The Catalan equation -- 8.6 The abc-conjecture -- 8.7 Further reading -- 8.8 Exercises -- 9 Factorization and primality testing -- 9.1 Fermat pseudoprimes -- 9.2 Euler pseudoprimes -- 9.3 Fermat factorization -- 9.4 Fermat bases -- 9.5 The continued-fraction method -- 9.6 Pollard's method -- 9.7 Cryptography -- 9.8 Further reading -- 9.9 Exercises -- 10 Number fields -- 10.1 Introduction -- 10.2 Algebraic numbers -- 10.3 Algebraic number fields -- 10.4 Dimension theorem -- 10.5 Norm and trace -- 10.6 Algebraic integers -- 10.7 Basis and discriminant -- 10.8 Calculation of bases -- 10.9 Further reading -- 10.10 Exercises -- 11 Ideals -- 11.1 Origins -- 11.2 Definitions -- 11.3 Principal ideals -- 11.4 Prime ideals -- 11.5 Norm of an ideal -- 11.6 Formula for the norm -- 11.7 The different -- 11.8 Further reading -- 11.9 Exercises -- 12 Units and ideal classes -- 12.1 Units -- 12.2 Dirichlet's unit theorem -- 12.3 Ideal classes -- 12.4 Minkowski's constant -- 12.5 Dedekind's theorem -- 12.6 The cyclotomic field -- 12.7 Calculation of class numbers -- 12.8 Local fields -- 12.9 Further reading -- 12.10 Exercises -- 13 Analytic number theory -- 13.1 Introduction -- 13.2 Dirichlet series -- 13.3 Tchebychev's estimates -- 13.4 Partial summation formula -- 13.5 Mertens' results -- 13.6 The Tchebychev functions -- 13.7 The irrationality of ζ(3) -- 13.8 Further reading -- 13.9 Exercises -- 14 On the zeros of the zeta-function -- 14.1 Introduction -- 14.2 The functional equation -- 14.3 The Euler product -- 14.4 On the logarithmic derivative of ζ(s) -- 14.5 The Riemann hypothesis -- 14.6 Explicit formula for ζ'(s)/ζ(s) -- 14.7 On certain sums -- 14.8 The Riemann-von Mangoldt formula -- 14.9 Further reading -- 14.10 Exercises -- 15 On the distribution of the primes -- 15.1 The prime-number theorem. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34205736 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28321544 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478919 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33350789 
938 |a Coutts Information Services  |b COUT  |n 23480114  |c 50.00 GBP 
938 |a EBL - Ebook Library  |b EBLB  |n EBL989106 
938 |a EBSCOhost  |b EBSC  |n 473241 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 392330 
938 |a YBP Library Services  |b YANK  |n 9802640 
938 |a YBP Library Services  |b YANK  |n 9672771 
938 |a YBP Library Services  |b YANK  |n 9914492 
938 |a YBP Library Services  |b YANK  |n 9661100 
994 |a 92  |b IZTAP