Cargando…

Optoisolation circuits : nonlinearity applications in engineering : optoisolation nonlinear dynamic and chaos : application in engineering /

This book describes a new concept in analyzing circuits, which includes optoisolation elements. The analysis is based on nonlinear dynamics and chaos models and shows comprehensive benefits and results. All conceptual optoisolation circuits are innovative and can be broadly implemented in engineerin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Aluf, Ofer
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific Publishing Co., ©2012.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Optoisolation products descriptions. 1.1. Optocouplers general description. 1.2. Opto negative differential resistance (NDR). 1.3. Absolute negative differential resistance (NDR). 1.4. Optocoupler (LED, photo transistor) as a basic negative differential resistance (NDR) circuit. 1.5. Optocoupler (LED, photo transistor) NDR circuit mathematical analysis. 1.6. Controlling NDR characteristics by optocoupler (LED, phototransistor) parameters. 1.7. Optocoupler (LED, photo transistor) computer analysis. 1.8. Oscillations and regenerative amplification using opto negative differential resistance (NDR). 1.9. Radio FM generation
  • Parameter variation method using opto NDR as compensation elements. 1.10. Multi channel bi directional digital optocoupler. 1.11. Exercises
  • 2. Optoisolation one dimensional flow and bifurcation. 2.1. Optocoupler flow on the line. 2.2. Optocoupler fixed point and stability. 2.3. Optocoupler fixed point and stability analysis using Taylor expansion estimation. 2.4. Optocoupler saddle
  • node bifurcation. 2.5. Optocoupler transcritical bifurcation. 2.6. Optocoupler pitchfork bifurcation. 2.7. Optocoupler imperfect bifurcations and catastrophes. 2.8. Optocoupler flow on the circle. 2.9. Optocoupler flow on the circle uniform oscillation. 2.10. Optocoupler flow on the circle non-uniform oscillation. 2.11. Exercises
  • 3. Optoisolation negative differential resistance (NDR) circuits as a dynamical system. 3.1. OPTO NDR basic dynamical circuit (Case I). 3.2. OPTO NDR fixed points and stability (Case I). 3.3. OPTO NDR basic dynamical circuit (Case II). 3.4. OPTO NDR fixed points and stability (Case II). 3.5. OPTO NDR linear stability analysis. 3.6. OPTO NDR bifurcation. 3.7. OPTO NDR cascade structure. 3.8. Exercises
  • 4. Optoisolation negative differential resistance (NDR) circuits in a topologic structures. 4.1. OPTO NDR flow on the line. 4.2. OPTO NDR fixed points and stability. 4.3. OPTO NDR circuit dynamic with oscillation source. 4.4. OPTO NDR circuit dynamic with inductor and output capacitor. 4.5. OPTO NDR circuit dynamic with serial capacitor. 4.6. Exercises
  • 5. Photocoupled FET's structure negative differential resistance (NDR) circuits. 5.1. Photocoupled FET general description. 5.2. Combinational connection of photocoupled FET's
  • negative differential resistance (NDR) circuit. 5.3. Photocoupled FET's circuit (NDR) flow on the line. 5.4. Photocoupled FET's circuit (NDR) one dimensional map discrete time. 5.5. Photocoupled FET's circuit (NDR) one dimensional R[symbol] map discrete time. 5.6. Photocoupled FET's circuit (NDR) one dimensional R[symbol] chaos and periodic windows. 5.7. Exercises.
  • 6. Optoisolation's circuits two dimensional flow. 6.1. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation. 6.2. Optoisolation's circuits two dimensional flow linear/nonlinear systems analysis using Taylor expansion estimation
  • Fixed points, stability. 6.3. Optoisolation's circuits two dimensional flow linear/nonlinear systems (exponential terms). 6.4. Optoisolation's circuits two dimensional flow bifurcation. 6.5. Optoisolation's circuits two dimensional flow center. 6.6. Optoisolation' circuit two dimensional flow k2 = 0, V2 = 0, k1 = 0 or k1 <> 0. 6.7. Exercises
  • 7. Optoisolation's circuits with time delay parameters. 7.1. Delayed optoisolation circuit general description. 7.2. Delayed OptoNDR circuit dynamic analysis. 7.3. OptoNDR circuit stability analysis under delayed variables in time. 7.4. OptoNDR circuit stability switching under parameters variations. 7.5. Delayed optoisolation system (higher order characteristic equation) dynamic analysis. 7.6. Delayed optoisolation system stability switching under parameters variations. 7.7. Exercises
  • 8. Optoisolation's circuits time periodic delay differential equation (DDE). 8.1. Delayed optoisolation circuit with periodic source Mathieu equation. 8.2. Delayed optoisolation circuit implementation with periodic source. 8.3. Delayed OptoNDR circuit implementation with periodic source. 8.4. Delayed OptoNDR circuit implementation with periodic source stability analysis. 8.5. Delayed OptoNDR circuit characteristic equation with periodic source stability analysis. 8.6. Exercises
  • 9. Optoisolation's circuits chaos characteristics. 9.1. Optoisolation Lorenz system. 9.2. Lorenzian optoisolation system properties. 9.3. Lorenzian optoisolation system chaos and attractors. 9.4. Optoisolation circuit Lorenz map and system parameters space. 9.5. Optoisolation system one dimensional map. 9.6. Optoisolation system one dimensional maps fixed points and logistic map. 9.7. Exercises
  • 10. Optoisolation's bifurcation behaviors
  • Investigation, comparison and conclusions.