Non-equilibrium thermodynamics and statistical mechanics : foundations and applications /
'Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications' builds from basic principles to advanced techniques, and covers the major phenomena, methods, and results of time-dependent systems. It is a pedagogic introduction, a comprehensive reference manual, an...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Oxford University Press,
©2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover Page
- Title Page
- Copyright Page
- Preface
- Contents
- Detailed Contents
- Chapter 1 Prologue
- 1.1 Entropy and the Second Law
- 1.2 Time Dependent Systems
- 1.2.1 The Second Law is Timeless
- 1.2.2 The Second Entropy
- 1.3 Nature of Probability
- 1.3.1 Frequency
- 1.3.2 Credibility
- 1.3.3 Measure
- 1.3.4 Determination of Randomness
- 1.4 States, Entropy, and Probability
- 1.4.1 Macrostates and Microstates
- 1.4.2 Weight and Probability
- 1.4.3 Entropy
- 1.4.4 Transitions and the Second Entropy
- 1.4.5 The Continuum
- 1.5 Reservoirs
- 1.5.1 Equilibrium Systems
- 1.5.2 Non-Equilibrium Steady State
- Chapter 2 Fluctuation Theory
- 2.1 Gaussian Probability
- 2.2 Exponential Decay in Markovian Systems
- 2.3 Small Time Expansion
- 2.4 Results for Pure Parity Systems
- 2.4.1 Onsager Regression Hypothesis and Reciprocal Relations
- 2.4.2 Green-Kubo Expression
- 2.4.3 Physical Interpretation of the Second Entropy
- 2.4.4 The Dissipation
- 2.4.5 Stability Theory
- 2.4.6 Non-Reversibility of the Trajectory
- 2.4.7 Third Entropy
- 2.5 Fluctuations of Mixed Time Parity
- 2.5.1 Second Entropy and Time Correlation Functions
- 2.5.2 Small Time Expansion for the General Case
- 2.5.3 Magnetic Fields and Coriolis Forces
- Chapter 3 Brownian Motion
- 3.1 Gaussian, Markov Processes
- 3.2 Free Brownian Particle
- 3.3 Pinned Brownian Particle
- 3.4 Diffusion Equation
- 3.5 Time Correlation Functions
- 3.6 Non-Equilibrium Probability Distribution
- 3.6.1 Stationary Trap
- 3.6.2 Uniformly Moving Trap
- 3.6.3 Mixed Parity Formulation of the Moving Trap
- 3.7 Entropy Probability, and their Evolution
- 3.7.1 Time Evolution of the Entropy and Probability
- 3.7.2 Compressibility of the Equations of Motion
- 3.7.3 The Fokker-Planck Equation
- 3.7.4 Generalised Equipartition Theorem
- 3.7.5 Liouville's Theorem.
- Chapter 4 Heat Conduction
- 4.1 Equilibrium System
- 4.2 First Energy Moment and First Temperature
- 4.3 Second Entropy
- 4.4 Thermal Conductivity and Energy Correlations
- 4.5 Reservoirs
- 4.5.1 First Entropy
- 4.5.2 Second Entropy
- 4.6 Heat and Number Flow
- 4.7 Heat and Current Flow
- Chapter 5 Second Entropy for Fluctuating Hydrodynamics
- 5.1 Conservation Laws
- 5.1.1 Densities, Velocities, and Chemical Reactions
- 5.1.2 Number Flux
- 5.1.3 Energy Flux
- 5.1.4 Linear Momentum
- 5.2 Entropy Density and its Rate of Change
- 5.2.1 Sub-system Dissipation
- 5.2.2 Steady State
- 5.3 Second Entropy
- 5.3.1 Variational Principle
- 5.3.2 Flux Optimisation
- 5.4 Navier-Stokes and Energy Equations
- Chapter 6 Heat Convection and Non-Equilibrium Phase Transitions
- 6.1 Hydrodynamic Equations of Convection
- 6.1.1 Boussinesq Approximation
- 6.1.2 Conduction
- 6.1.3 Convection
- 6.2 Total First Entropy of Convection
- 6.3 Algorithm for Ideal Straight Rolls
- 6.3.1 Hydrodynamic Equations
- 6.3.2 Fourier Expansion
- 6.3.3 Nusselt Number
- 6.4 Algorithm for the Cross Roll State
- 6.4.1 Hydrodynamic Equations and Conditions
- 6.4.2 Fourier Expansion
- 6.5 Algorithm for Convective Transitions
- 6.6 Convection Theory and Experiment
- Chapter 7 Equilibrium Statistical Mechanics
- 7.1 Hamilton's Equations of Motion
- 7.1.1 Classical versus Quantum Statistical Mechanics
- 7.2 Probability Density of an Isolated System
- 7.2.1 Ergodic Hypothesis
- 7.2.2 Time, Volume, and Surface Averages
- 7.2.3 Energy Uniformity
- 7.2.4 Trajectory Uniformity
- 7.2.5 Partition Function and Entropy
- 7.2.6 Internal Entropy of Phase Space Points
- 7.3 Canonical Equilibrium System
- 7.3.1 Maxwell-Boltzmann Distribution
- 7.3.2 Helmholtz Free Energy
- 7.3.3 Probability Distribution for Other Systems
- 7.3.4 Equipartition Theorem.
- 7.4 Transition Probability
- 7.4.1 Stochastic Equations of Motion
- 7.4.2 Second Entropy
- 7.4.3 Mixed Parity Derivation of the Second Entropy and the Equations of Motion
- 7.4.4 Irreversibility and Dissipation
- 7.4.5 The Fokker-Planck Equation and Stationarity of the Equilibrium Probability
- 7.5 Evolution in Phase Space
- 7.5.1 Various Phase Functions
- 7.5.2 Compressibility
- 7.5.3 Liouville's Theorem
- 7.6 Reversibility
- 7.6.1 Isolated System
- 7.6.2 Canonical Equilibrium System
- 7.7 Trajectory Probability and Time Correlation Functions
- 7.7.1 Trajectory Probability
- 7.7.2 Equilibrium Averages
- 7.7.3 Time Correlation Functions
- 7.7.4 Reversibility
- Chapter 8 Non-Equilibrium Statistical Mechanics
- 8.1 General Considerations
- 8.2 Reservoir Entropy
- 8.2.1 Trajectory Entropy
- 8.2.2 Reduction to the Point Entropy
- 8.2.3 Fluctuation Form for the Reservoir Entropy
- 8.3 Transitions and Motion in Phase Space
- 8.3.1 Foundations for Time Dependent Weight
- 8.3.2 Fluctuation Form of the Second Entropy
- 8.3.3 Time Correlation Function
- 8.3.4 Stochastic, Dissipative Equations of Motion
- 8.3.5 Transition Probability and Fokker-Planck Equation
- 8.3.6 Most Likely Force with Constraints
- 8.4 Changes in Entropy and Time Derivatives
- 8.4.1 Change in Entropy
- 8.4.2 Irreversibility and Dissipation
- 8.4.3 Various Time Derivatives
- 8.4.4 Steady State System
- 8.5 Odd Projection of the Dynamic Reservoir Entropy
- 8.6 Path Entropy and Transitions
- 8.6.1 Path Entropy
- 8.6.2 Fluctuation and Work Theorem
- 8.7 Path Entropy for Mechanical Work
- 8.7.1 Evolution of the Reservoir Entropy and Transitions ...
- 8.7.2 Transition Theorems
- Chapter 9 Statistical Mechanics of Steady Flow: Heat and Shear
- 9.1 Thermodynamics of Steady Heat Flow
- 9.1.1 Canonical Equilibrium System.
- 9.1.2 Fourier's Law of Heat Conduction
- 9.1.3 Second Entropy for Heat Flow
- 9.2 Phase Space Probability Density
- 9.2.1 Explicit Hamiltonian and First Energy Moment
- 9.2.2 Reservoir Entropy and Probability Density
- 9.3 Most Likely Trajectory
- 9.4 Equipartition Theorem for Heat Flow
- 9.5 Green-Kubo Expressions for the Thermal Conductivity
- 9.5.1 Isolated System
- 9.5.2 Heat Reservoirs
- 9.5.3 Relation with Odd Projection
- 9.6 Shear Flow
- 9.6.1 Second Entropy for Shear Flow
- 9.6.2 Phase Space Probability Density
- 9.6.3 Most Likely Trajectory
- 9.6.4 Equipartition Theorem
- Chapter 10 Generalised Langevin Equation
- 10.1 Free Brownian Particle
- 10.1.1 Time Correlation Functions
- 10.1.2 Mixed Parity Digression
- 10.1.3 Diffusion Constant
- 10.1.4 Trajectory Entropy and Correlation
- 10.2 Langevin and Smoluchowski Equations
- 10.3 Perturbation Theory
- 10.3.1 Most Likely Velocity
- 10.3.2 Alternative Derivation
- 10.3.3 Most Likely Position
- 10.3.4 Stochastic Dissipative Equations of Motion
- 10.3.5 Generalised Langevin Equation for Velocity
- 10.3.6 Fluctuation Dissipation Theorem
- 10.3.7 Weiner-Khintchine Theorem
- 10.3.8 Exponentially Decaying Memory Function
- 10.4 Adiabatic Linear Response Theory
- 10.5 Numerical Results for a Brownian Particle in a Moving Trap
- 10.5.1 Langevin Theory
- 10.5.2 Smoluchowski Theory
- 10.5.3 Computer Simulations
- 10.5.4 Perturbation Algorithm
- 10.5.5 Relative Amplitude and Phase Lag
- 10.5.6 Stochastic Trajectory
- 10.6 Generalised Langevin Equation in the Case of Mixed Parity
- 10.6.1 Equilibrium System
- 10.6.2 Regression of Fluctuation
- 10.6.3 Time Dependent Perturbation
- 10.6.4 Generalised Langevin Equation
- 10.7 Projector Operator Formalism
- 10.8 Harmonic Oscillator Model for the Memory Function
- 10.8.1 Generalised Langevin Equation.
- 10.8.2 Modified Random Force
- 10.8.3 Discussion
- Chapter 11 Non-Equilibrium Computer Simulation Algorithms
- 11.1 Stochastic Molecular Dynamics
- 11.1.1 Equilibrium Systems
- 11.1.2 Mechanical Non-Equilibrium System
- 11.1.3 Driven Brownian Motion
- 11.1.4 Steady Heat Flow
- 11.2 Non-Equilibrium Monte Carlo
- 11.2.1 Equilibrium Systems
- 11.2.2 Non-Equilibrium Systems
- 11.2.3 Driven Brownian Motion
- 11.2.4 Steady Heat Flow
- 11.3 Brownian Dynamics
- 11.3.1 Elementary Brownian Dynamics
- 11.3.2 Perturbative Brownian Dynamics
- 11.3.3 Stochastic Calculus
- References
- Index
- Footnotes.