Cargando…

Representations of Lie algebras : an introduction through gln /

"This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Henderson, Anthony, 1976-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Australian Mathematical Society lecture series ; 22.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn808501344
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120828s2012 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCQ  |d MHW  |d YDXCP  |d OCLCO  |d CAMBR  |d EBLCP  |d DEBSZ  |d MEAUC  |d UMI  |d LRU  |d OCLCQ  |d OCLCF  |d OCLCQ  |d HEBIS  |d OCLCO  |d UAB  |d OCLCQ  |d COCUF  |d CNNOR  |d STF  |d CEF  |d CUY  |d MERUC  |d ZCU  |d ICG  |d VTS  |d OCLCQ  |d K6U  |d LOA  |d VT2  |d U3W  |d AU@  |d CNCEN  |d DEBBG  |d OCLCQ  |d WYU  |d LVT  |d S8J  |d S9I  |d TKN  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d A6Q  |d OCLCQ  |d G3B  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCQ  |d OCLCO  |d OCLCQ  |d S9M 
019 |a 811489742  |a 815824650  |a 852166390  |a 1042918296  |a 1043673834  |a 1058558720  |a 1065686526  |a 1076626925  |a 1081208672  |a 1084359233  |a 1153548772 
020 |a 9781139550208  |q (electronic bk.) 
020 |a 1139550209  |q (electronic bk.) 
020 |a 1139555162  |q (electronic bk.) 
020 |a 9781139555166  |q (electronic bk.) 
020 |a 9781139236126  |q (electronic bk.) 
020 |a 1139236121  |q (electronic bk.) 
020 |a 9781139564984 
020 |a 1139564986 
020 |z 9781107653610 
020 |z 1107653614 
020 |z 9781139552714 
020 |z 1139552716 
029 1 |a AU@  |b 000052006856 
029 1 |a AU@  |b 000069241489 
029 1 |a DEBBG  |b BV041431133 
029 1 |a DEBSZ  |b 379329638 
029 1 |a DEBSZ  |b 398269599 
029 1 |a DEBSZ  |b 445574526 
029 1 |a NLGGC  |b 345567455 
035 |a (OCoLC)808501344  |z (OCoLC)811489742  |z (OCoLC)815824650  |z (OCoLC)852166390  |z (OCoLC)1042918296  |z (OCoLC)1043673834  |z (OCoLC)1058558720  |z (OCoLC)1065686526  |z (OCoLC)1076626925  |z (OCoLC)1081208672  |z (OCoLC)1084359233  |z (OCoLC)1153548772 
037 |a CL0500000233  |b Safari Books Online 
050 4 |a QA252.3 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.482  |2 23 
084 |a MAT002000  |2 bisacsh 
049 |a UAMI 
100 1 |a Henderson, Anthony,  |d 1976- 
245 1 0 |a Representations of Lie algebras :  |b an introduction through gln /  |c Anthony Henderson, School of Mathematics and Statistics, University of Sydney. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource (ix, 156 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Australian Mathematical Society lecture series ;  |v 22 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Representations of Lie Algebras; AUSTRALIAN MATHEMATICAL SOCIETY LECTURE SERIES; Title; Copyright; Contents; Preface; Notational conventions; CHAPTER 1 Motivation: representations of Lie groups; 1.1 Homomorphisms of general linear groups; 1.2 Multilinear algebra; 1.3 Linearization of the problem; 1.4 Lie's theorem; CHAPTER 2 Definition of a Lie algebra; 2.1 Definition and first examples; 2.2 Classification and isomorphisms; 2.3 Exercises; CHAPTER 3 Basic structure of a Lie algebra; 3.1 Lie subalgebras; 3.2 Ideals; 3.3 Quotients and simple Lie algebras; 3.4 Exercises. 
505 8 |a CHAPTER 4 Modules over a Lie algebra; 4.1 Definition of a module; 4.2 Isomorphism of modules; 4.3 Submodules and irreducible modules; 4.4 Complete reducibility; 4.5 Exercises; CHAPTER 5 The theory of sl2-modules; 5.1 Classification of irreducibles; 5.2 Complete reducibility; 5.3 Exercises; CHAPTER 6 General theory of modules; 6.1 Duals and tensor products; 6.2 Hom-spaces and bilinear forms; 6.3 Schur's lemma and the Killing form; 6.4 Casimir operators; 6.5 Exercises; CHAPTER 7 Integral gln-modules; 7.1 Integral weights; 7.2 Highest-weight modules; 7.3 Irreducibility of highest-weight modules. 
505 8 |a 7.4 Tensor-product construction of irreducibles; 7.5 Complete reducibility; 7.6 Exercises; CHAPTER 8 Guide to further reading; 8.1 Classification of simple Lie algebras; 8.2 Representations of simple Lie algebras; 8.3 Characters and bases of representations; APPENDIX Solutions to the exercises; Solutions for Chapter 2 exercises; Solutions for Chapter 3 exercises; Solutions for Chapter 4 exercises; Solutions for Chapter 5 exercises; Solutions for Chapter 6 exercises; Solutions for Chapter 7 exercises; References; Index. 
520 |a "This bold and refreshing approach to Lie algebras assumes only modest prerequisites (linear algebra up to the Jordan canonical form and a basic familiarity with groups and rings), yet it reaches a major result in representation theory: the highest-weight classification of irreducible modules of the general linear Lie algebra. The author's exposition is focused on this goal rather than aiming at the widest generality and emphasis is placed on explicit calculations with bases and matrices. The book begins with a motivating chapter explaining the context and relevance of Lie algebras and their representations and concludes with a guide to further reading. Numerous examples and exercises with full solutions are included. Based on the author's own introductory course on Lie algebras, this book has been thoroughly road-tested by advanced undergraduate and beginning graduate students and it is also suited to individual readers wanting an introduction to this important area of mathematics"--  |c Provided by publisher 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Representations of Lie algebras. 
650 6 |a Représentations des algèbres de Lie. 
650 7 |a MATHEMATICS  |x Algebra  |x General.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Álgebras de Lie  |2 embne 
650 7 |a Representations of Lie algebras  |2 fast 
650 7 |a Lie-Algebra  |2 gnd 
650 7 |a Darstellungstheorie  |2 gnd 
776 0 8 |i Print version:  |a Henderson, Anthony, 1976-  |t Representations of Lie algebras  |z 9781107653610  |w (DLC) 2012021841  |w (OCoLC)785872028 
830 0 |a Australian Mathematical Society lecture series ;  |v 22. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=473268  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34206421 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33350838 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26478999 
938 |a EBL - Ebook Library  |b EBLB  |n EBL989151 
938 |a ebrary  |b EBRY  |n ebr10591104 
938 |a EBSCOhost  |b EBSC  |n 473268 
938 |a YBP Library Services  |b YANK  |n 9568787 
938 |a YBP Library Services  |b YANK  |n 9914644 
938 |a YBP Library Services  |b YANK  |n 9600418 
938 |a YBP Library Services  |b YANK  |n 9621280 
994 |a 92  |b IZTAP