Cargando…

Distributions : generalized functions with applications in Sobolev spaces /

This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bhattacharyya, Pulin K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, ©2012.
Colección:De Gruyter textbook.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn808342072
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 111110s2012 gw a ob 001 0 eng d
010 |z  2011042975 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d CDX  |d N$T  |d IDEBK  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ  |d S3O  |d OCLCQ  |d TEFOD  |d OCLCQ  |d OCLCO  |d DEGRU  |d VNS  |d VTS  |d AU@  |d OCLCQ  |d STF  |d LEAUB  |d UKAHL  |d OCLCQ  |d U3G  |d M8D  |d OCLCQ  |d U9X  |d VLY  |d AUD  |d AJS  |d OCLCQ  |d FWA  |d OCLCQ 
066 |c (S 
019 |a 796384285  |a 1013941092  |a 1029835566  |a 1032695957  |a 1037981585  |a 1041982409  |a 1046611048  |a 1047001148  |a 1049663347  |a 1054881141  |a 1058528031  |a 1086962619  |a 1162534626  |a 1241754837  |a 1297454350  |a 1297583701  |a 1300661259 
020 |a 9783110269291  |q (electronic bk.) 
020 |a 3110269295  |q (electronic bk.) 
020 |z 9783110269277  |q (hardcover alk. paper) 
020 |a 1283857669 
020 |a 9781283857666 
024 7 |a 10.1515/9783110269291  |2 doi 
029 1 |a CHBIS  |b 010396725 
029 1 |a CHVBK  |b 331230267 
029 1 |a DEBBG  |b BV043110082 
029 1 |a DEBSZ  |b 421374926 
029 1 |a DEBSZ  |b 431129029 
029 1 |a DEBSZ  |b 472759787 
029 1 |a DEBSZ  |b 47828215X 
029 1 |a AU@  |b 000062634653 
035 |a (OCoLC)808342072  |z (OCoLC)796384285  |z (OCoLC)1013941092  |z (OCoLC)1029835566  |z (OCoLC)1032695957  |z (OCoLC)1037981585  |z (OCoLC)1041982409  |z (OCoLC)1046611048  |z (OCoLC)1047001148  |z (OCoLC)1049663347  |z (OCoLC)1054881141  |z (OCoLC)1058528031  |z (OCoLC)1086962619  |z (OCoLC)1162534626  |z (OCoLC)1241754837  |z (OCoLC)1297454350  |z (OCoLC)1297583701  |z (OCoLC)1300661259 
037 |a B4AC7DB7-01B6-41B6-9672-B80A4CD0743D  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA324  |b .B46 2012eb 
072 7 |a MAT  |x 037000  |2 bisacsh 
082 0 4 |a 515/.782  |2 23 
084 |a SK 600  |2 rvk 
049 |a UAMI 
100 1 |a Bhattacharyya, Pulin K. 
245 1 0 |a Distributions :  |b generalized functions with applications in Sobolev spaces /  |c Pulin Kumar Bhattacharyya. 
260 |a Berlin ;  |a Boston :  |b De Gruyter,  |c ©2012. 
300 |a 1 online resource (xxxviii, 833 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |b PDF 
347 |a text file 
490 1 |a De Gruyter textbook 
504 |a Includes bibliographical references and index. 
520 |a This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples. 
546 |a In English. 
505 0 |6 880-01  |a Preface ; How to use this book in courses ; Acknowledgment ; Notation ; 1 Schwartz distributions ; 1.1 Introduction: Dirac's delta function e(x) and its properties ; 1.2 Test space D (]) of Schwartz ; 1.2.1 Support of a continuous function ; 1.2.2 Space D (]) ; 1.2.3 Space Dm(]); 1.2.4 Space DK (]) ; 1.2.5 Properties of D (]) ; 1.3 Space D'(]) of (Schwartz) distributions; 1.3.1 Algebraic dual space D*(]). 
505 8 |a 1.3.2 Distributions and the space D'(]) of distributions on ]1.3.3 Characterization, order and extension of a distribution ; 1.3.4 Examples of distributions ; 1.3.5 Distribution defined on test space D(]) of complex-valued functions ; 1.4 Some more examples of interesting distributions ; 1.5 Multiplication of distributions by C -functions ; 1.6 Problem of division of distributions. 
505 8 |a 1.7 Even, odd and positive distributions 1.8 Convergence of sequences of distributions in D'(]); 1.9 Convergence of series of distributions in D'(]) ; 1.10 Images of distributions due to change of variables, homogeneous, invariant, spherically symmetric, constant distributions ; 1.10.1 Periodic distributions. 
505 8 |a 1.11 Physical distributions versus mathematical distributions 1.11.1 Physical interpretation of mathematical distributions ; 1.11.2 Load intensity ; 1.11.3 Electrical charge distribution ; 1.11.4 Simple layer and double layer distributions. 
505 8 |a 1.11.5 Relation with probability distribution [7] 2 Differentiation of distributions and application of distributional derivatives ; 2.1 Introduction: an integral definition of derivatives of C1-functions ; 2.2 Derivatives of distributions. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Theory of distributions (Functional analysis)  |v Textbooks. 
650 0 |a Sobolev spaces  |v Textbooks. 
650 4 |a Sobolev spaces  |x Textbooks. 
650 4 |a Theory of distributions (Functional analysis)  |x Textbooks. 
650 7 |a MATHEMATICS  |x Functional Analysis.  |2 bisacsh 
650 7 |a Sobolev spaces.  |2 fast  |0 (OCoLC)fst01122115 
650 7 |a Theory of distributions (Functional analysis)  |2 fast  |0 (OCoLC)fst01149672 
650 7 |a Distribution.  |2 gnd 
650 7 |a Sobolev-Raum  |2 gnd 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
776 0 8 |i Print version:  |a Bhattacharyya, Pulin Kumar.  |t Distributions : Generalized Functions with Applications in Sobolev Spaces.  |d Berlin : De Gruyter, ©2012  |z 9783110269277 
830 0 |a De Gruyter textbook. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=471060  |z Texto completo 
880 0 0 |6 505-01/(S  |t Frontmatter --  |t Preface --  |t Contents --  |t How to use this book in courses --  |t Acknowledgment --  |t Notation --  |t Chapter 1. Schwartz distributions --  |t Chapter 2. Differentiation of distributions and application of distributional derivatives --  |t Chapter 3. Derivatives of piecewise smooth functions, Green's formula, elementary solutions, applications to Sobolev spaces --  |t Chapter 4. Additional properties of Dʹ(Ω) --  |t Chapter 5. Local properties, restrictions, unification principle, space ℰʹ(ℝn) of distributions with compact support --  |t Chapter 6. Convolution of distributions --  |t Chapter 7. Fourier transforms of functions of L1(ℝn) and S(ℝn) --  |t Chapter 8. Fourier transforms of distributions and Sobolev spaces of arbitrary order HS(ℝn) --  |t 8.1 Motivation for a possible definition of the Fourier transform of a distribution --  |t 8.2 Space Sʹ (Rn) of tempered distributions --  |t 8.3 Fourier transform of tempered distributions --  |t 8.4 Fourier transform of distributions with compact support --  |t 8.5 Fourier transform of convolution of distributions --  |t 8.6 Derivatives of Fourier transforms and Fourier transforms of derivatives of tempered distributions --  |t 8.7 Fourier transform methods for differential equations and elementary solutions in Sʹ(ℝn) --  |t 8.8 Laplace transform of distributions on ℝ --  |t 8.9 Applications --  |t 8.10 Sobolev spaces on Ω ≠ Rn revisited --  |t 8.11 Compactness results in Sobolev spaces --  |t 8.12 Sobolev's imbedding results --  |t 8.13 Sobolev spaces Hs.(Γ), Ws;p(Γ) on a manifold boundary Γ --  |t 8.14 Trace results in Sobolev spaces on Ω⊊ℝn --  |t Chapter 9. Vector-valued distributions --  |t Appendix A. Functional analysis (basic results) --  |t Appendix B. Lp-spaces --  |t Appendix C. Open cover and partition of unity --  |t Appendix D. Boundary geometry --  |t Bibliography --  |t Index. 
938 |a De Gruyter  |b DEGR  |n 9783110269291 
938 |a YBP Library Services  |b YANK  |n 7624822 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24364333 
938 |a EBSCOhost  |b EBSC  |n 471060 
938 |a ebrary  |b EBRY  |n ebr10582244 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL893889 
938 |a Coutts Information Services  |b COUT  |n 24364333 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25311796 
994 |a 92  |b IZTAP