Time reversability, computer simulation, algorithms, chaos /
A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the authors' approach to the probl...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hackensack, N.J. :
World Scientific,
2012.
|
Edición: | 2nd ed. |
Colección: | Advanced series in nonlinear dynamics ;
v. 13. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; Preface to the First Edition; Contents; Glossary of Technical Terms; 1. Time Reversibility, Computer Simulation, Algorithms, Chaos; 1.1 Microscopic Reversibility; Macroscopic Irreversibility; 1.2 Time Reversibility of Irreversible Processes; 1.3 Classical Microscopic and Macroscopic Simulation; 1.4 Continuity, Information, and Bit Reversibility; 1.5 Instability and Chaos; 1.6 Simple Explanations of Complex Phenomena; 1.7 The Paradox: Irreversibility from Reversible Dynamics; 1.8 Algorithm: Fourth-Order Runge-Kutta Integrator; 1.9 Example Problems; 1.9.1 Equilibrium Baker Map.
- 1.9.2 Equilibrium Galton Board1.9.3 Equilibrium Hookean Pendulum; 1.9.4 Nose-Hoover Oscillator with a Temperature Gradient; 1.10 Summary and Notes; 1.10.1 Notes and References; 2. Time-Reversibility in Physics and Computation; 2.1 Introduction; 2.2 Time Reversibility; 2.3 Levesque and Verlet's Bit-Reversible Algorithm; 2.4 Lagrangian and Hamiltonian Mechanics; 2.5 Liouville's Incompressible Theorem; 2.6 What Is Macroscopic Thermodynamics?; 2.7 First and Second Laws of Thermodynamics; 2.8 Temperature, Zeroth Law, Reservoirs, Thermostats.
- 2.9 Irreversibility from Stochastic Irreversible Equations2.10 Irreversibility from Time-Reversible Equations?; 2.11 An Algorithm Implementing Bit-Reversible Dynamics; 2.12 Example Problems; 2.12.1 Time-Reversible Dissipative Map; 2.12.2 A Smooth-Potential Galton Board; 2.13 Summary; 2.13.1 Notes and References; 3. Gibbs' Statistical Mechanics; 3.1 Scope and History; 3.2 Formal Structure of Gibbs' Statistical Mechanics; 3.3 Initial Conditions, Boundary Conditions, Ergodicity; 3.4 From Hamiltonian Dynamics to Gibbs' Probability; 3.5 From Gibbs' Probability to Thermodynamics.
- 3.6 Pressure and Energy from Gibbs' Canonical Ensemble3.7 Gibbs' Entropy versus Boltzmann's Entropy; 3.8 Number-Dependence and Thermodynamic Fluctuations; 3.9 Green and Kubo's Linear-Response Theory; 3.10 An Algorithm for Local Smooth-Particle Averages; 3.11 Example Problems; 3.11.1 Quasiharmonic Thermodynamics; 3.11.2 Hard-Disk and Hard-Sphere Thermodynamics; 3.11.3 Time-Reversible Confined Free Expansion; 3.12 Summary; 3.12.1 Notes and References; 4. Irreversibility in Real Life; 4.1 Introduction; 4.2 Phenomenology
- the Linear Dissipative Laws.
- 4.3 Microscopic Basis of the Irreversible Linear Laws4.4 Solving the Linear Macroscopic Equations; 4.5 Nonequilibrium Entropy Changes; 4.6 Fluctuations and Nonequilibrium States; 4.7 Deviations from the Phenomenological Linear Laws; 4.8 Causes of Irreversibility a la Boltzmann and Lyapunov; 4.9 Rayleigh-Benard Algorithm with Atomistic Flow; 4.10 Rayleigh-Benard Algorithm for a Continuum; 4.11 Three Rayleigh-Benard Example Problems; 4.11.1 Rayleigh-Benard Flow via Lorenz' Attractor; 4.11.2 Rayleigh-Benard Flow with Continuum Mechanics; 4.11.3 Rayleigh-Benard Flow with Molecular Dynamics.