Cargando…

Geometry, topology and dynamics of character varieties /

This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010. Aimed at graduate students in the early stages of r...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Goldman, William Mark, Series, Caroline, Tan, Ser Peow
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, N.J. : World Scientific, 2012.
Colección:Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; v. 23.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn808340709
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 120807s2012 njua ob 000 0 eng d
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCO  |d N$T  |d YDXCP  |d OCLCQ  |d OCLCF  |d EBLCP  |d MHW  |d CGU  |d DEBSZ  |d IDEBK  |d CDX  |d OCLCQ  |d COCUF  |d AGLDB  |d MOR  |d PIFAG  |d OTZ  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d VT2  |d OCLCQ  |d JBG  |d UMR  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d UKCRE  |d AJS  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 804661889  |a 817794904  |a 961580022  |a 962716896  |a 974671362  |a 974753959  |a 1153510580  |a 1243581203  |a 1297427548  |a 1297791156 
020 |a 9789814401364  |q (electronic bk.) 
020 |a 9814401366  |q (electronic bk.) 
020 |a 1281603678 
020 |a 9781281603678 
020 |z 9814401358 
020 |z 9789814401357 
029 1 |a AU@  |b 000051582498 
029 1 |a DEBBG  |b BV043104149 
029 1 |a DEBBG  |b BV044167540 
029 1 |a DEBSZ  |b 379329425 
029 1 |a DEBSZ  |b 421358505 
029 1 |a DEBSZ  |b 454997671 
029 1 |a NZ1  |b 15908251 
035 |a (OCoLC)808340709  |z (OCoLC)804661889  |z (OCoLC)817794904  |z (OCoLC)961580022  |z (OCoLC)962716896  |z (OCoLC)974671362  |z (OCoLC)974753959  |z (OCoLC)1153510580  |z (OCoLC)1243581203  |z (OCoLC)1297427548  |z (OCoLC)1297791156 
050 4 |a QA611.A1  |b G46 2012eb 
072 7 |a MAT  |x 038000  |2 bisacsh 
072 7 |a PBM  |2 bicssc 
082 0 4 |a 514  |2 23 
049 |a UAMI 
245 0 0 |a Geometry, topology and dynamics of character varieties /  |c editors, William Goldman, Caroline Series, Ser Peow Tan. 
260 |a Hackensack, N.J. :  |b World Scientific,  |c 2012. 
300 |a 1 online resource (xi, 349 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
490 1 |a Lecture notes series. Institute for Mathematical Sciences, National University of Singapore ;  |v v. 23 
504 |a Includes bibliographical references. 
505 0 |a Foreword; Preface; An Invitation to Elementary Hyperbolic Geometry Ying Zhang; Introduction; 1. Euclid's Elements, Book I and Neutral Plane Geometry; 1.1. A brief review of contents of Elements, Book I; 1.2. A useful lemma; 1.3. A gure-free proof of Proposition I.7; 1.4. More notes on Elements, Book I; 1.5. Playfair's axiom; 1.6. Neutral plane geometry; 1.7. Angle-sums of triangles and Legendre's Theorems; 1.8. Quadrilaterals with two consecutive right angles; 1.9. Saccheri and Lambert quadrilaterals; 1.10. Variation of triangles in a neutral plane. 
505 8 |a 1.11. A midline configuration for triangles1.12. More theorems of neutral plane geometry; 1.13. Small angles; 2. Hyperbolic Plane Geometry; 2.1. Hyperbolic plane; 2.2. Asymptotic Parallelism; 2.3. Angle of parallelism; 2.4. The variation in the distance between two straight lines; 2.5. Some more theorems in hyperbolic plane geometry; 2.6. Construction of the common perpendicular to two ultra-parallel straight lines; 2.7. Construction of asymptotic parallels; 2.8. Ideal points; 2.9. Horocycles; 2.10. Construction of the straight line joining two given ideal points; 2.11. Ultra-ideal points. 
505 8 |a 2.12. The projective plane associated to a hyperbolic plane2.13. Center-pencils of a hyperbolic triangle; 2.14. Equidistant curves; 2.15. Positions of proper points relative to an ideal point; 2.16. Hyperbolic areas via equivalence of triangles; 2.17. Metric relations of corresponding arcs in concentric horocycles; 3. Isometries of the Hyperbolic Plane; 3.1. Isometries and reections in straight lines; 3.2. Orientation preserving/reversing isometries; 3.3. Rotations; 3.4. Translations; 3.5. Isometries of parabolic type; 3.6. Redundancy of two reflections. 
505 8 |a 3.7. Orientation reversing isometries as reflections and glide reflections3.8. Isometries as projective transformations; 3.9. Invariant projective lines of; 3.10. Composition of two orientation preserving isometries other than two translations; 3.11. Composition of two translations; 3.12. Conjugates of isometries; 3.13. The orthic triangle; 4. Hyperbolic Trigonometry Derived from Isometries; 4.1. Some identities of isometries of a neutral plane; 4.2. Some trigonometric formulas in H2(k); 4.3. Upper half-plane model U2 for hyperbolic plane H2(1); 4.4. Matrices of certain isometries of U2. 
505 8 |a 4.5. Trigonometric laws via identities of isometries4.6. Suggested further readings; Acknowledgments; References; Hyperbolic Structures on Surfaces Javier Aramayona; 1. Introduction; 2. Plane Hyperbolic Geometry; 2.1. Mobius transformations; 2.1.1. Classification in terms of trace and fixed points; 2.2. Models for hyperbolic geometry; 2.2.1. Hyperbolic distance; 2.2.2. Mobius transformations act by isometries; 2.2.3. The Cayley transformation; 2.2.4. Hyperbolic geodesics; 2.2.5. The boundary at infinity; 2.2.6. The full isometry group; 2.2.7. Dynamics of elements of Isom+(H). 
520 |a This volume is based on lectures given at the highly successful three-week Summer School on Geometry, Topology and Dynamics of Character Varieties held at the National University of Singapore's Institute for Mathematical Sciences in July 2010. Aimed at graduate students in the early stages of research, the edited and refereed articles comprise an excellent introduction to the subject of the program, much of which is otherwise available only in specialized texts. Topics include hyperbolic structures on surfaces and their degenerations, applications of ping-pong lemmas in various contexts, intro. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Topology. 
650 6 |a Topologie. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Topology  |2 fast 
700 1 |a Goldman, William Mark. 
700 1 |a Series, Caroline. 
700 1 |a Tan, Ser Peow. 
776 0 8 |i Print version:  |a Goldman, William.  |t Geometry, Topology and Dynamics of Character Varieties.  |d Singapore : World Scientific, ©2012  |z 9789814401357 
830 0 |a Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;  |v v. 23. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479888  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24103941 
938 |a Coutts Information Services  |b COUT  |n 24008274 
938 |a EBL - Ebook Library  |b EBLB  |n EBL982517 
938 |a ebrary  |b EBRY  |n ebr10583620 
938 |a EBSCOhost  |b EBSC  |n 479888 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 378436 
938 |a YBP Library Services  |b YANK  |n 9455816 
994 |a 92  |b IZTAP