Cargando…

Exercises in probability : a guided tour from measure theory to random processes, via conditioning /

"Derived from extensive teaching experience in Paris, this second edition now includes over 100 exercises in probability. New exercises have been added to reflect important areas of current research in probability theory, including infinite divisibility of stochastic processes, past-future mart...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chaumont, L. (Loïc)
Otros Autores: Yor, Marc
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Edición:2nd ed.
Colección:Cambridge series on statistical and probabilistic mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn805071330
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120123s2012 enk ob 001 0 eng d
040 |a CDX  |b eng  |e pn  |c CDX  |d N$T  |d E7B  |d YDXCP  |d OCLCQ  |d CUS  |d OCLCQ  |d COO  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCL  |d CNO  |d OCLCQ  |d OTZ  |d NJR  |d BUF  |d OCLCQ  |d UAB  |d OCLCQ  |d COCUF  |d STF  |d YDX  |d LOA  |d VT2  |d OCLCQ  |d TKN  |d U3W  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d AU@  |d M8D  |d CEF  |d UX1  |d OCLCQ  |d S8J  |d OCLCQ  |d OCL  |d K6U  |d VLY  |d UKAHL  |d LUN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 1029700842  |a 1058962506  |a 1061070377  |a 1081235065  |a 1082757328  |a 1162014952  |a 1170134164  |a 1170773461  |a 1228566578  |a 1241872011  |a 1259218705 
020 |a 9781139526562  |q (electronic bk.) 
020 |a 1139526561  |q (electronic bk.) 
020 |a 9781139135351 
020 |a 113913535X 
020 |a 9781283528511 
020 |a 1283528517 
020 |a 9781139531238 
020 |a 1139531239 
020 |z 9781107606555  |q (Paper) 
020 |z 1107606551  |q (Paper) 
020 |a 1107232309 
020 |a 9781107232303 
020 |a 1139528955 
020 |a 9781139528955 
020 |a 1139532421 
020 |a 9781139532426 
020 |a 1139527762 
020 |a 9781139527767 
020 |a 9786613840967 
020 |a 6613840963 
024 8 |a 9786613840967 
029 1 |a AU@  |b 000056848381 
029 1 |a CHNEW  |b 000619429 
035 |a (OCoLC)805071330  |z (OCoLC)1029700842  |z (OCoLC)1058962506  |z (OCoLC)1061070377  |z (OCoLC)1081235065  |z (OCoLC)1082757328  |z (OCoLC)1162014952  |z (OCoLC)1170134164  |z (OCoLC)1170773461  |z (OCoLC)1228566578  |z (OCoLC)1241872011  |z (OCoLC)1259218705 
037 |a 384096  |b MIL 
050 4 |a QA273.25 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/076  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Chaumont, L.  |q (Loïc) 
245 1 0 |a Exercises in probability :  |b a guided tour from measure theory to random processes, via conditioning /  |c Loïc Chaumont, Marc Yor. 
250 |a 2nd ed. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource (xx, 279 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Cambridge series in statistical and probabilistic mathematics 
520 |a "Derived from extensive teaching experience in Paris, this second edition now includes over 100 exercises in probability. New exercises have been added to reflect important areas of current research in probability theory, including infinite divisibility of stochastic processes, past-future martingales and fluctuation theory. For each exercise the authors provide detailed solutions as well as references for preliminary and further reading. There are also many insightful notes to motivate the student and set the exercises in context"--  |c Provided by publisher 
504 |a Includes bibliographical references (pages 270-277) and index. 
588 0 |a Print version record. 
505 0 |a Preface to the Second Edition -- Preface to the First Edition -- 1. Measure theory and probability -- 2. Independence and conditioning -- 3. Gaussian variables -- 4. Distributional computations -- 5. Convergence of random variables -- 6. Random processes -- Where is the notion N discussed? -- Final suggestions: how to go further? 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Probabilities. 
650 0 |a Probabilities  |v Problems, exercises, etc. 
650 2 |a Probability 
650 4 |a Mathematics. 
650 4 |a Probabilities  |v Problems, exercises, etc. 
650 6 |a Probabilités. 
650 6 |a Probabilités  |v Problèmes et exercices. 
650 7 |a probability.  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Probabilities.  |2 fast  |0 (OCoLC)fst01077737 
655 2 |a Problems and Exercises 
655 7 |a exercise books.  |2 aat 
655 7 |a Problems and exercises.  |2 fast  |0 (OCoLC)fst01423783 
655 7 |a Problems and exercises.  |2 lcgft 
655 7 |a Problèmes et exercices.  |2 rvmgf 
700 1 |a Yor, Marc. 
776 0 8 |i Print version:  |a Chaumont, L. (Loïc).  |t Exercises in probability.  |b 2nd ed.  |d Cambridge ; New York : Cambridge University Press, 2012  |z 9781107606555  |w (DLC) 2012002653  |w (OCoLC)773921342 
830 0 |a Cambridge series on statistical and probabilistic mathematics. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=466664  |z Texto completo 
880 0 |6 505-00/(S  |a Cover -- Exercises in Probability -- Series -- Title -- Copyright -- Dedication -- Contents -- Preface to the second edition -- Preface to the first edition -- Some frequently used notations -- Chapter 1: Measure theory and probability -- 1.1 Some traps concerning the union of σ-fields -- 1.2 Sets which do not belong in a strong sense, to a σ-field -- 1.3 Some criteria for uniform integrability -- 1.4 When does weak convergence imply the convergence of expectations-- 1.5 Conditional expectation and the Monotone Class Theorem -- 1.6 Lp-convergence of conditional expectations -- 1.7 Measure preserving transformations -- 1.8 Ergodic transformations -- 1.9 Invariant σ-fields -- 1.10 Extremal solutions of (general) moments problems -- 1.11 The log normal distribution is moments indeterminate -- 1.12 Conditional expectations and equality in law -- 1.13 Simplifiable random variables -- 1.14 Mellin transform and simplification -- 1.15 There exists no fractional covering of the real line -- Solutions for Chapter 1 -- Solution to Exercise 1.1 -- Solution to Exercise 1.2 -- Solution to Exercise 1.3 -- Solution to Exercise 1.4 -- Solution to Exercise 1.5 -- Solution to Exercise 1.6 -- Solution to Exercise 1.7 -- Solution to Exercise 1.8 -- Solution to Exercise 1.9 -- Solution to Exercise 1.10 -- Solution to Exercise 1.11 -- Solution to Exercise 1.12 -- Solution to Exercise 1.13 -- Solution to Exercise 1.14 -- Solution to Exercise 1.15 -- Chapter 2: Independence and conditioning -- 2.1 Independence does not imply measurability with respect to an independent complement -- 2.2 Complement to Exercise 2.1: further statements of independence versus measurability -- 2.3 Independence and mutual absolute continuity -- 2.4 Size-biased sampling and conditional laws -- 2.5 Think twice before exchanging the order of taking the supremum and intersection of σ-fields! 
880 8 |6 505-00/(S  |a 2.6 Exchangeability and conditional independence: de Finetti's theorem -- 2.7 On exchangeable σ-fields -- 2.8 Too much independence implies constancy -- 2.9 A double paradoxical inequality -- 2.10 Euler's formula for primes and probability -- 2.11 The probability, for integers, of being relatively prime -- 2.12 Completely independent multiplicative sequences of U-valued random variables -- 2.13 Bernoulli random walks considered at some stopping time -- 2.14 cosh, sinh, the Fourier transform and conditional independence -- 2.15 cosh, sinh, and the Laplace transform -- 2.16 Conditioning and changes of probabilities -- 2.17 Radon-Nikodym density and the Acceptance- Rejection Method of von Neumann -- 2.18 Negligible sets and conditioning -- 2.19 Gamma laws and conditioning -- 2.20 Random variables with independent fractional and integer parts -- 2.21 Two characterizations of the simple random walk -- Solutions for Chapter 2 -- Solution to Exercise 2.1 -- Solution to Exercise 2.2 -- Solution to Exercise 2.3 -- Solution to Exercise 2.4 -- Solution to Exercise 2.5 -- Solution to Exercise 2.6 -- Solution to Exercise 2.7 -- Solution to Exercise 2.8 -- Solution to Exercise 2.9 -- Solution to Exercise 2.10 -- Solution to Exercise 2.11 -- Solution to Exercise 2.12 -- Solution to Exercise 2.13 -- Solution to Exercise 2.14 -- Solution to Exercise 2.15 -- Solution to Exercise 2.16 -- Solution to Exercise 2.17 -- Solution to Exercise 2.18 -- Solution to Exercise 2.19 -- Solution to Exercise 2.20 -- Solution to Exercise 2.21 -- Chapter 3: Gaussian variables -- 3.1 Constructing Gaussian variables from, but not belonging to, a Gaussian space -- 3.2 A complement to Exercise 3.1 -- 3.3 Gaussian vectors and orthogonal projections -- 3.4 On the negative moments of norms of Gaussian vectors -- 3.5 Quadratic functionals of Gaussian vectors and continued fractions. 
880 8 |6 505-00/(S  |a 5.11 Convergence in law of stable(μ) variables, as μτ̔̈"»9"·0 -- 5.12 Finite-dimensional convergence in law towards Brownian motion -- 5.13 The empirical process and the Brownian bridge -- 5.14 The functional law of large numbers -- 5.15 The Poisson process and Brownian motion -- 5.16 Brownian bridges converging in law to Brownian motions -- 5.17 An almost sure convergence result for sums of stable random variables -- Chapter 6: Random processes -- 6.1 Jeulin's lemma deals with the absolute convergence of integrals of random processes -- 6.2 Functions of Brownian motion as solutions to SDEs -- the example of (x) = sinh(x) -- 6.3 Bougerol's identity and some Bessel variants -- 6.4 Doléans-Dade exponentials and the Maruyama- Girsanov-Van Schuppen-Wong theorem revisited -- 6.5 The range process of Brownian motion -- 6.6 Symmetric Lévy processes reflected at their minimum and maximum -- E. Csáki's formulae for the ratio of Brownian extremes -- 6.7 Infinite divisibility with respect to time -- 6.8 A toy example for Westwater's renormalization -- 6.9 Some asymptotic laws of planar Brownian motion -- 6.10 Windings of the three-dimensional Brownian motion around a line -- 6.11 Cyclic exchangeability property and uniform law related to the Brownian bridge -- 6.12 Local time and hitting time distributions for the Brownian bridge -- 6.13 Partial absolute continuity of the Brownian bridge distribution with respect to the Brownian distribution -- 6.14 A Brownian interpretation of the duplication formula for the gamma function -- 6.15 Some deterministic time-changes of Brownian motion -- 6.16 A new path construction of Brownian and Bessel bridges -- 6.17 Random scaling of the Brownian bridge -- 6.18 Time-inversion and quadratic functionals of Brownian motion -- Lévy's stochastic area formula -- 6.19 Quadratic variation and local time of semimartingales. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24076504 
938 |a Coutts Information Services  |b COUT  |n 23141468  |c 29.00 GBP 
938 |a ebrary  |b EBRY  |n ebr10583271 
938 |a EBSCOhost  |b EBSC  |n 466664 
938 |a YBP Library Services  |b YANK  |n 9590135 
938 |a YBP Library Services  |b YANK  |n 9454157 
938 |a YBP Library Services  |b YANK  |n 9458503 
938 |a YBP Library Services  |b YANK  |n 9523342 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37563235 
994 |a 92  |b IZTAP