Cargando…

Regular variation /

This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bingham, N. H.
Otros Autores: Goldie, C. M., Teugels, Jef L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1987.
Colección:Encyclopedia of mathematics and its applications ; v. 27.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn802299813
003 OCoLC
005 20231017213018.0
006 m o d
007 cr bn||||||abp
007 cr bn||||||ada
008 120728s1987 enka ob 001 0 eng d
040 |a OCLCE  |b eng  |e pn  |c OCLCE  |d OCLCO  |d OCLCQ  |d N$T  |d IDEBK  |d E7B  |d CAMBR  |d OCLCF  |d OCLCQ  |d YDXCP  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d VTS  |d REC  |d OCLCO  |d STF  |d AU@  |d OCLCO  |d M8D  |d OCLCQ  |d K6U  |d OCLCO  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 852898938  |a 1030083422  |a 1030132275  |a 1117478154  |a 1125681539  |a 1136376388 
020 |a 9781107087651  |q (electronic bk.) 
020 |a 1107087651  |q (electronic bk.) 
020 |a 9780511721434  |q (electronic bk.) 
020 |a 0511721439  |q (electronic bk.) 
020 |z 0521307872 
020 |z 9780521307871 
020 |z 0521379431  |q (pbk.) 
020 |z 9780521379434  |q (pbk.) 
029 1 |a DEBBG  |b BV043113787 
029 1 |a DEBSZ  |b 421262397 
029 1 |a GBVCP  |b 804046948 
035 |a (OCoLC)802299813  |z (OCoLC)852898938  |z (OCoLC)1030083422  |z (OCoLC)1030132275  |z (OCoLC)1117478154  |z (OCoLC)1125681539  |z (OCoLC)1136376388 
042 |a dlr 
050 4 |a QA331.5  |b .B54 1987 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.8  |2 19 
084 |a 31.40  |2 bcl 
084 |a SK 420  |2 rvk 
084 |a SK 660  |2 rvk 
084 |a MAT 269f  |2 stub 
084 |a MAT 285f  |2 stub 
049 |a UAMI 
100 1 |a Bingham, N. H. 
245 1 0 |a Regular variation /  |c N.H. Bingham, C.M. Goldie, J.L. Teugels. 
260 |a Cambridge [Cambridgeshire] ;  |a New York :  |b Cambridge University Press,  |c 1987. 
300 |a 1 online resource (xix, 491 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Encyclopedia of mathematics and its applications ;  |v v. 27 
504 |a Includes bibliographical references (pages 445-466). 
500 |a Includes indexes. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [Place of publication not identified] :  |c HathiTrust Digital Library,  |d 2012.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2012  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
505 0 |a Karamata theory -- Further Karamata theory -- De Haan theory -- Abelian and Tauberian theorems -- Mercerian theorems -- Applications to analytic number theory -- Applications to complex analysis -- Applications to probability theory -- Appendices. 
520 |a This book is a comprehensive account of the theory and applications of regular variation. It is concerned with the asymptotic behaviour of a real function of a real variable x which is 'close' to a power of x. Such functions are much more than a convenient extension of powers. In many limit theorems regular variation is intrinsic to the result, and exactly characterises the limit behaviour. The book emphasises such characterisations, and gives a comprehensive treatment of those applications where regular variation plays an essential (rather then merely convenient) role. The authors rigorously develop the basic ideas of Karamata theory and de Haan theory including many new results and 'second-order' theorems. They go on to discuss the role of regular variation in Abelian, Tauberian, and Mercerian theorems. These results are then applied in analytic number theory, complex analysis, and probability, with the aim above all of setting the theory in context. A widely scattered literature is thus brought together in a unified approach. With several appendices and a comprehensive list of references, analysts, number theorists, and probabilists will find this an invaluable and complete account of regular variation. It will provide a rigorous and authoritative introduction to the subject for research students in these fields. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Functions of real variables. 
650 0 |a Calculus. 
650 6 |a Fonctions de variables réelles. 
650 6 |a Calcul infinitésimal. 
650 7 |a calculus.  |2 aat 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Calculus.  |2 fast  |0 (OCoLC)fst00844119 
650 7 |a Functions of real variables.  |2 fast  |0 (OCoLC)fst00936120 
650 7 |a Reguläres Variationsproblem  |2 gnd 
650 7 |a Fonctions d'une variable réelle.  |2 ram 
653 |a Calculus  |a Functions of real variables 
700 1 |a Goldie, C. M. 
700 1 |a Teugels, Jef L. 
776 0 8 |i Print version:  |w (DLC) 86028422  |w (OCoLC)14719199 
830 0 |a Encyclopedia of mathematics and its applications ;  |v v. 27. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569298  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10733629 
938 |a EBSCOhost  |b EBSC  |n 569298 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26006770 
938 |a YBP Library Services  |b YANK  |n 10858952 
938 |a YBP Library Services  |b YANK  |n 10862013 
938 |a YBP Library Services  |b YANK  |n 10866253 
938 |a YBP Library Services  |b YANK  |n 10869750 
994 |a 92  |b IZTAP