|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
EBSCO_ocn801193203 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
120423s2012 enka fob 001 0 eng d |
040 |
|
|
|a CDX
|b eng
|e pn
|c CDX
|d OCLCO
|d N$T
|d YDXCP
|d OCLCQ
|d OSU
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d M8D
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781848168596
|q (electronic bk.)
|
020 |
|
|
|a 1848168594
|q (electronic bk.)
|
020 |
|
|
|z 9781848168589
|q (hbk.)
|
020 |
|
|
|z 1848168586
|q (hbk.)
|
024 |
8 |
|
|a 9786613784193
|
029 |
1 |
|
|a DEBBG
|b BV043152742
|
029 |
1 |
|
|a DEBSZ
|b 421358440
|
029 |
1 |
|
|a GBVCP
|b 804041172
|
035 |
|
|
|a (OCoLC)801193203
|
050 |
|
4 |
|a QA601
|b .K57 2012eb
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.1
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kisil, Vladimir V.
|
245 |
1 |
0 |
|a Geometry of möbius transformations :
|b elliptic, parabolic and hyperbolic actions of SL2, (R) /
|c Vladimir V. Kisil.
|
260 |
|
|
|a London, UK :
|b Imperial College Press ;
|a Singapore :
|b World Scientific,
|c 2012.
|
300 |
|
|
|a 1 online resource (xiv, 192 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Erlangen programme : preview -- Groups and homogeneous spaces -- Homogeneous spaces from the group SL₂(R) -- The extended Fillmore-Springer-Cnops construction -- Indefinite product space of cycles -- Joint invariants of cycles: orthogonality -- Metric invariants in upper half-planes -- Global geometry of upper half-planes -- Invariant metric and geodesics -- Conformal unit disk -- Unitary rotations.
|
520 |
|
|
|a This book is a unique exposition of rich and inspiring geometries associated with Mobius transformations of the hypercomplex plane. The presentation is self-contained and based on the structural properties of the group SL[symbol](real number). Starting from elementary facts in group theory, the author unveils surprising new results about the geometry of circles, parabolas and hyperbolas, using an approach based on the Erlangen programme of F. Klein, who defined geometry as a study of invariants under a transitive group action. The treatment of elliptic, parabolic and hyperbolic Mobius transformations is provided in a uniform way. This is possible due to an appropriate usage of complex, dual and double numbers which represent all non-isomorphic commutative associative two-dimensional algebras with unit. The hypercomplex numbers are in perfect correspondence with the three types of geometries concerned. Furthermore, connections with the physics of Minkowski and Galilean space-time are considered.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Möbius transformations.
|
650 |
|
6 |
|a Transformations de Möbius.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Möbius transformations
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Kisil, Vladimir V.
|t Geometry of möbius transformations.
|d London, UK : Imperial College Press ; Singapore: World Scientific, 2012
|z 9781848168589
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479894
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24102025
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 22985522
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 479894
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9455704
|
994 |
|
|
|a 92
|b IZTAP
|