Cargando…

Assessing the reliability of complex models : mathematical and statistical foundations of verification, validation, and uncertainty quantification /

"Advances in computing hardware and algorithms have dramatically improved the ability to simulate complex processes computationally. Today's simulation capabilities offer the prospect of addressing questions that in the past could be addressed only by resource-intensive experimentation, if...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores Corporativos: National Research Council (U.S.). Committee on Mathematical Foundations of Verification, Validation, and Uncertainty Quantification, National Research Council (U.S.). Board on Mathematical Sciences and Their Applications, National Research Council (U.S.). Division on Engineering and Physical Sciences
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Washington, D.C. : National Academies Press, Ã2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn798361535
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 120706s2012 dcua ob 000 0 eng d
010 |a  2013397241 
040 |a COP  |b eng  |e pn  |c COP  |d COP  |d UCNAP  |d OCLCO  |d ORU  |d OCLCQ  |d N$T  |d E7B  |d CDX  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d IDEBK  |d COO  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCO  |d OCLCQ  |d AZK  |d AGLDB  |d VGM  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d ICG  |d INT  |d AU@  |d OCLCQ  |d WYU  |d LVT  |d VT2  |d STF  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d UKAHL  |d UKCRE  |d AJS  |d OCLCO  |d OCL  |d OCLCQ 
016 7 |a 016193907  |2 Uk 
019 |a 809848844  |a 813396087  |a 817819119  |a 817963417  |a 923289221  |a 961628157  |a 962696301  |a 988483001  |a 1037900796  |a 1058112103  |a 1065699095  |a 1081204948  |a 1153467427  |a 1156364281  |a 1228537089  |a 1249222574 
020 |a 9780309256353  |q (electronic bk.) 
020 |a 0309256356  |q (electronic bk.) 
020 |a 1283636220 
020 |a 9781283636223 
020 |a 6613948683 
020 |a 9786613948687 
020 |z 9780309256346 
020 |z 0309256348 
029 1 |a AU@  |b 000051461408 
029 1 |a CHNEW  |b 000636370 
029 1 |a DEBBG  |b BV043067178 
029 1 |a DEBBG  |b BV044109423 
029 1 |a DEBSZ  |b 42136470X 
029 1 |a DEBSZ  |b 452579694 
029 1 |a NZ1  |b 15024642 
029 1 |a AU@  |b 000068805016 
035 |a (OCoLC)798361535  |z (OCoLC)809848844  |z (OCoLC)813396087  |z (OCoLC)817819119  |z (OCoLC)817963417  |z (OCoLC)923289221  |z (OCoLC)961628157  |z (OCoLC)962696301  |z (OCoLC)988483001  |z (OCoLC)1037900796  |z (OCoLC)1058112103  |z (OCoLC)1065699095  |z (OCoLC)1081204948  |z (OCoLC)1153467427  |z (OCoLC)1156364281  |z (OCoLC)1228537089  |z (OCoLC)1249222574 
037 |b 00017961 
050 4 |a QA76.9.C65 
072 7 |a COM  |x 072000  |2 bisacsh 
072 7 |a PB  |2 bicssc 
082 0 4 |a 003.3  |2 23 
049 |a UAMI 
245 0 0 |a Assessing the reliability of complex models :  |b mathematical and statistical foundations of verification, validation, and uncertainty quantification /  |c Committee on Mathematical Foundations of Verification, Validation, and Uncertainty Quantification ; Board on Mathematical Sciences and Their Applications ; Division on Engineering and Physical Sciences. 
260 |a Washington, D.C. :  |b National Academies Press,  |c Ã2012. 
300 |a 1 online resource (xi, 131 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
520 |a "Advances in computing hardware and algorithms have dramatically improved the ability to simulate complex processes computationally. Today's simulation capabilities offer the prospect of addressing questions that in the past could be addressed only by resource-intensive experimentation, if at all. Assessing the Reliability of Complex Models recognizes the ubiquity of uncertainty in computational estimates of reality and the necessity for its quantification. As computational science and engineering have matured, the process of quantifying or bounding uncertainties in a computational estimate of a physical quality of interest has evolved into a small set of interdependent tasks: verification, validation, and uncertainty of quantification (VVUQ). In recognition of the increasing importance of computational simulation and the increasing need to assess uncertainties in computational results, the National Research Council was asked to study the mathematical foundations of VVUQ and to recommend steps that will ultimately lead to improved processes. [This report] discusses changes in education of professionals and dissemination of information that should enhance the ability of future VVUQ practitioners to improve and properly apply VVUQ methodologies to difficult problems, enhance the ability of VVUQ customers to understand VVUQ results and use them to make informed decisions, and enhance the ability of all VVUQ stakeholders to communicate with each other. This report is an essential resource for all decision and policy makers in the field, students, stakeholders, UQ experts, and VVUQ educators and practitioners"--Publisher's description. 
504 |a Includes bibliographical references. 
505 0 |a Introduction -- Sources of uncertainty and error -- Verification -- Emulation, reduced-order modeling, and forward propagation -- Model validation and prediction -- Making decisions -- Next steps in practice, research, and education for verification, validation, and uncertainty quantification -- Appendixes. 
588 0 |a Online resource; title from title screen (National Academies Press, viewed July 6, 2012). 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computer simulation. 
650 0 |a Uncertainty  |x Mathematical models. 
650 0 |a Digital computer simulation. 
650 6 |a Simulation par ordinateur. 
650 7 |a simulation.  |2 aat 
650 7 |a COMPUTERS  |x Computer Simulation.  |2 bisacsh 
650 7 |a Digital computer simulation.  |2 fast  |0 (OCoLC)fst00893651 
650 7 |a Computer simulation.  |2 fast  |0 (OCoLC)fst00872518 
650 7 |a Uncertainty  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01160835 
710 2 |a National Research Council (U.S.).  |b Committee on Mathematical Foundations of Verification, Validation, and Uncertainty Quantification. 
710 2 |a National Research Council (U.S.).  |b Board on Mathematical Sciences and Their Applications. 
710 2 |a National Research Council (U.S.).  |b Division on Engineering and Physical Sciences. 
776 0 8 |i Print version:  |t Assessing the reliability of complex models.  |d Washington : National Academies Press, 2012  |z 0309256348  |w (OCoLC)784035096 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=476038  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36560343 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36617579 
938 |a Coutts Information Services  |b COUT  |n 23606244 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3378995 
938 |a ebrary  |b EBRY  |n ebr10594220 
938 |a EBSCOhost  |b EBSC  |n 476038 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 394868 
938 |a YBP Library Services  |b YANK  |n 9596134 
994 |a 92  |b IZTAP