Cargando…

Advanced engineering analysis : the calculus of variations and functional analysis with applications in mechanics /

Advanced Engineering Analysis is a textbook on modern engineering analysis, covering the calculus of variations, functional analysis, control theory, as well as applications of these disciplines to mechanics. The book offers a brief and concise, yet complete explanation of essential theory and appli...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lebedev, L. P.
Otros Autores: Cloud, Michael J., Eremeyev, Victor A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Pub. Co., 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn797852168
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 120607s2012 si a ob 001 0 eng d
010 |z  2011277044 
040 |a E7B  |b eng  |e pn  |c E7B  |d N$T  |d NTE  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d STF  |d IDEBK  |d CDX  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d OCLCQ  |d JBG  |d AU@  |d OTZ  |d DEBBG  |d OCLCQ  |d UKAHL  |d AJS  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO 
019 |a 978563410  |a 978910295  |a 1048232641  |a 1048746958  |a 1058111844  |a 1064770987  |a 1086420706  |a 1087388730  |a 1297093606  |a 1297720028  |a 1357514857 
020 |a 9789814390484  |q (electronic bk.) 
020 |a 9814390488  |q (electronic bk.) 
020 |z 981439047X  |q (print) 
020 |z 9789814390477  |q (print) 
029 1 |a DEBBG  |b BV043157645 
029 1 |a DEBSZ  |b 372739997 
029 1 |a DEBSZ  |b 421411511 
029 1 |a NZ1  |b 14695245 
035 |a (OCoLC)797852168  |z (OCoLC)978563410  |z (OCoLC)978910295  |z (OCoLC)1048232641  |z (OCoLC)1048746958  |z (OCoLC)1058111844  |z (OCoLC)1064770987  |z (OCoLC)1086420706  |z (OCoLC)1087388730  |z (OCoLC)1297093606  |z (OCoLC)1297720028  |z (OCoLC)1357514857 
050 4 |a TA330  |b .L43 2012eb 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 621 
049 |a UAMI 
100 1 |a Lebedev, L. P. 
245 1 0 |a Advanced engineering analysis :  |b the calculus of variations and functional analysis with applications in mechanics /  |c Leonid P. Lebedev, Michael J. Cloud, Victor A. Eremeyev. 
260 |a Singapore :  |b World Scientific Pub. Co.,  |c 2012. 
300 |a 1 online resource (x, 489 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Basic calculus of variations. 1.1. Introduction. 1.2. Euler's equation for the simplest problem. 1.3. Properties of extremals of the simplest functional. 1.4. Ritz's method. 1.5. Natural boundary conditions. 1.6. Extensions to more general functionals. 1.7. Functionals depending on functions in many variables. 1.8. A functional with integrand depending on partial derivatives of higher order. 1.9. The first variation. 1.10. Isoperimetric problems. 1.11. General form of the first variation. 1.12. Movable ends of extremals. 1.13. Broken extremals: Weierstrass-Erdmann conditions and related problems. 1.14. Sufficient conditions for minimum. 1.15. Exercises -- 2. Applications of the calculus of variations in mechanics. 2.1. Elementary problems for elastic structures. 2.2. Some extremal principles of mechanics. 2.3. Conservation laws. 2.4. Conservation laws and Noether's theorem. 2.5. Functionals depending on higher derivatives of y. 2.6. Noether's theorem, general case. 2.7. Generalizations. 2.8. Exercises -- 3. Elements of optimal control theory. 3.1. A variational problem as an optimal control problem. 3.2. General problem of optimal control. 3.3. Simplest problem of optimal control. 3.4. Fundamental solution of a linear ordinary differential equation. 3.5. The simplest problem, continued. 3.6. Pontryagin's maximum principle for the simplest problem. 3.7. Some mathematical preliminaries. 3.8. General terminal control problem. 3.9. Pontryagin's maximum principle for the terminal optimal problem. 3.10. Generalization of the terminal control problem. 3.11. Small variations of control function for terminal control problem. 3.12. A discrete version of small variations of control function for generalized terminal control problem. 3.13. Optimal time control problems. 3.14. Final remarks on control problems. 3.15. Exercises. 
505 8 |a 4. Functional analysis. 4.1. A normed space as a metric space. 4.2. Dimension of a linear space and separability. 4.3. Cauchy sequences and Banach spaces. 4.4. The completion theorem. 4.5. L[symbol] spaces and the Lebesgue integral. 4.6. Sobolev spaces. 4.7. Compactness. 4.8. Inner product spaces, Hilbert spaces. 4.9. Operators and functionals. 4.10. Contraction mapping principle. 4.11. Some approximation theory. 4.12 Orthogonal decomposition of a Hilbert space and the Riesz representation theorem. 4.13. Basis, Gram-Schmidt procedure, and Fourier series in Hilbert space. 4.14. Weak convergence. 4.15. Adjoint and self-adjoint operators. 4.16. Compact operators. 4.17. Closed operators. 4.18. On the Sobolev imbedding theorem. 4.19. Some energy spaces in mechanics. 4.20. Introduction to spectral concepts. 4.21. The Fredholm theory in Hilbert spaces. 4.22. Exercises -- 5. Applications of functional analysis in mechanics. 5.1. Some mechanics problems from the standpoint of the calculus of variations; the virtual work principle. 5.2. Generalized solution of the equilibrium problem for a clamped rod with springs. 5.3. Equilibrium problem for a clamped membrane and its generalized solution. 5.4. Equilibrium of a free membrane. 5.5. Some other equilibrium problems of linear mechanics. 5.6. The Ritz and Bubnov-Galerkin methods. 5.7. The Hamilton-Ostrogradski principle and generalized setup of dynamical problems in classical mechanics. 5.8. Generalized setup of dynamic problem for membrane. 5.9. Other dynamic problems of linear mechanics. 5.10. The Fourier method. 5.11. An eigenfrequency boundary value problem arising in linear mechanics. 5.12. The spectral theorem. 5.13. The Fourier method, continued. 5.14. Equilibrium of a von Karman plate. 5.15. A unilateral problem. 5.16. Exercises. 
520 |a Advanced Engineering Analysis is a textbook on modern engineering analysis, covering the calculus of variations, functional analysis, control theory, as well as applications of these disciplines to mechanics. The book offers a brief and concise, yet complete explanation of essential theory and applications. It contains exercises with hints and solutions, ideal for self-study. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Engineering mathematics. 
650 0 |a Calculus. 
650 0 |a Mechanics. 
650 6 |a Mathématiques de l'ingénieur. 
650 6 |a Calcul infinitésimal. 
650 6 |a Mécanique. 
650 7 |a calculus.  |2 aat 
650 7 |a mechanics (physics)  |2 aat 
650 7 |a TECHNOLOGY & ENGINEERING  |x Mechanical.  |2 bisacsh 
650 7 |a Calculus  |2 fast 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Mechanics  |2 fast 
700 1 |a Cloud, Michael J. 
700 1 |a Eremeyev, Victor A. 
776 0 8 |i Print version:  |a Lebedev, Leonid P.  |t Advanced Engineering Analysis : The Calculus of Variations and Functional Analysis with Applications in Mechanics.  |d Singapore : World Scientific, ©2012  |z 9789814390477 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457240  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565431 
938 |a Coutts Information Services  |b COUT  |n 26007373 
938 |a ebrary  |b EBRY  |n ebr10563494 
938 |a EBSCOhost  |b EBSC  |n 457240 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis26007373 
938 |a YBP Library Services  |b YANK  |n 7583598 
938 |a Internet Archive  |b INAR  |n advancedengineer0000lebe 
994 |a 92  |b IZTAP