Cargando…

Compressed sensing : theory and applications /

"Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting recent theoretical advances and a range o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Eldar, Yonina C., Kutyniok, Gitta
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBSCO_ocn796803943
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120626s2012 enk ob 001 0 eng d
010 |a  2011040519 
040 |a N$T  |b eng  |e pn  |c N$T  |d CDX  |d OCLCO  |d EBLCP  |d COO  |d MERUC  |d YDXCP  |d E7B  |d OCLCQ  |d UIU  |d CAMBR  |d DEBSZ  |d Z@L  |d GA0  |d UMI  |d DEBBG  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCA  |d YDX  |d OCLCQ  |d ZEM  |d UAB  |d OCLCQ  |d COCUF  |d CNNOR  |d STF  |d CEF  |d CUY  |d ZCU  |d ICG  |d K6U  |d LOA  |d VT2  |d U3W  |d OCLCQ  |d TKN  |d CNCEN  |d WYU  |d G3B  |d LVT  |d S8J  |d S9I  |d DKC  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d AU@  |d OCLCQ  |d ESU  |d M8D  |d UX1  |d AUD  |d OCLCQ  |d D6H  |d A6Q  |d OCLCQ  |d UKCRE  |d SNU  |d UKAHL  |d AJS  |d OCLCQ  |d LUN  |d QGK  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 796214832  |a 800679109  |a 848042547  |a 869478854  |a 974760835  |a 974976201  |a 975023225  |a 975099852  |a 1014201431  |a 1042973312  |a 1043688030  |a 1059244741  |a 1081263859  |a 1084399696  |a 1105800882  |a 1153511153  |a 1167590459  |a 1169502085  |a 1259060859 
020 |a 9780511794308  |q (electronic bk.) 
020 |a 0511794304  |q (electronic bk.) 
020 |a 9781139336673  |q (electronic bk.) 
020 |a 1139336673  |q (electronic bk.) 
020 |a 1139339990 
020 |a 9781139339995 
020 |z 9781107005587 
020 |z 1107005582 
020 |z 1139338412 
020 |z 9781139338417 
020 |z 9781139339995 
020 |a 9781139341578  |q (ebk.) 
020 |a 113934157X  |q (ebk.) 
020 |a 1107227364 
020 |a 9781107227361 
020 |a 1280773502 
020 |a 9781280773501 
020 |a 9786613684271 
020 |a 6613684279 
020 |a 1139337548 
020 |a 9781139337540 
024 8 |a 9786613684271 
029 1 |a AU@  |b 000062628761 
029 1 |a DEBBG  |b BV041778446 
029 1 |a DEBSZ  |b 379326574 
029 1 |a DEBSZ  |b 404329357 
029 1 |a DEBSZ  |b 445571683 
029 1 |a NZ1  |b 14689164 
029 1 |a AU@  |b 000069242281 
035 |a (OCoLC)796803943  |z (OCoLC)796214832  |z (OCoLC)800679109  |z (OCoLC)848042547  |z (OCoLC)869478854  |z (OCoLC)974760835  |z (OCoLC)974976201  |z (OCoLC)975023225  |z (OCoLC)975099852  |z (OCoLC)1014201431  |z (OCoLC)1042973312  |z (OCoLC)1043688030  |z (OCoLC)1059244741  |z (OCoLC)1081263859  |z (OCoLC)1084399696  |z (OCoLC)1105800882  |z (OCoLC)1153511153  |z (OCoLC)1167590459  |z (OCoLC)1169502085  |z (OCoLC)1259060859 
037 |a 368427  |b MIL 
050 4 |a QA601  |b .C638 2012eb 
072 7 |a COM  |x 031000  |2 bisacsh 
072 7 |a TEC  |x 067000  |2 bisacsh 
082 0 4 |a 621.382/2  |2 23 
084 |a ST 620  |2 rvk 
084 |a ZQ 3124  |2 rvk 
084 |a GEO 007f  |2 stub 
049 |a UAMI 
245 0 0 |a Compressed sensing :  |b theory and applications /  |c edited by Yonina C. Eldar, Gitta Kutyniok. 
260 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
520 |a "Compressed sensing is an exciting, rapidly growing field, attracting considerable attention in electrical engineering, applied mathematics, statistics and computer science. This book provides the first detailed introduction to the subject, highlighting recent theoretical advances and a range of applications, as well as outlining numerous remaining research challenges. After a thorough review of the basic theory, many cutting-edge techniques are presented, including advanced signal modeling, sub-Nyquist sampling of analog signals, non-asymptotic analysis of random matrices, adaptive sensing, greedy algorithms and use of graphical models. All chapters are written by leading researchers in the field, and consistent style and notation are utilized throughout. Key background information and clear definitions make this an ideal resource for researchers, graduate students and practitioners wanting to join this exciting research area. It can also serve as a supplementary textbook for courses on computer vision, coding theory, signal processing, image processing and algorithms for efficient data processing"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |6 880-01  |a 1. Introduction to compressed sensing / Mark A. Davenport, Marco F. Duarte, Yonina C. Eldar, and Gitta Kutyniok -- 2. Second-generation sparse modeling: structured and collaborative signal analysis / Alexey Castrodad, Ignacio Ramirez, Guillermo Sapiro, Pablo Sprechmann, and Guoshen Yu -- 3. Xampling: compressed sensing of analog signals / Moshe Mishali and Yonina C. Eldar -- 4. Sampling at the rate of innovation: theory and applications / Jose Antonia Urigüen, Yonina C. Eldar, Pier Luigi Dragotta, and Zvika Ben-Haim -- 5. Introduction to the non-asymptotic analysis of random matrices / Roman Vershynin -- 6. Adaptive sensing for sparse recovery / Jarvis Haupt and Robert Nowak -- 7. Fundamental thresholds in compressed sensing: a high-dimensional geometry approach / Weiyu Xu and Babak Hassibi -- 8. Greedy algorithms for compressed sensing / Thomas Blumensath, Michael E. Davies, and Gabriel Rilling -- 9. Graphical models concepts in compressed sensing / Andrea Montanari -- 10. Finding needles in compressed haystacks / Robert Calderbank and Sina Jafarpour -- 11. Data separation by sparse representations / Gitta Kutyniok -- 12. Face recognition by sparse representation / Arvind Ganesh, Andrew Wagner, Zihan Zhou, Allen Y. Yang, Yi Ma, and John Wright. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Signal processing. 
650 0 |a Wavelets (Mathematics) 
650 4 |a Signal processing. 
650 4 |a Wavelets (Mathematics) 
650 6 |a Traitement du signal. 
650 6 |a Ondelettes. 
650 7 |a COMPUTERS  |x Information Theory.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Signals & Signal Processing.  |2 bisacsh 
650 7 |a Signal processing.  |2 fast  |0 (OCoLC)fst01118281 
650 7 |a Wavelets (Mathematics)  |2 fast  |0 (OCoLC)fst01172896 
650 7 |a Informationstheorie  |2 gnd 
650 7 |a Signaltheorie  |2 gnd 
700 1 |a Eldar, Yonina C. 
700 1 |a Kutyniok, Gitta. 
776 0 8 |i Print version:  |t Compressed sensing.  |d Cambridge ; New York : Cambridge University Press, 2012  |z 9781107005587  |w (DLC) 2011040519  |w (OCoLC)756578482 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=438963  |z Texto completo 
880 8 |6 505-01/(S  |a 6.2.1.1 Single component generative model -- 6.2.1.2 Measurement adaptation -- 6.2.2 Bayesian inference using multi-component models -- 6.2.2.1 Multi-component generative model -- 6.2.2.2 Measurement adaptation -- 6.2.3 Quantifying performance -- 6.3 Quasi-Bayesian adaptive sensing -- 6.3.1 Denoising using non-adaptive measurements -- 6.3.2 Distilled sensing -- 6.3.2.1 Analysis of distilled sensing -- 6.3.3 Distillation in compressed sensing -- 6.4 Related work and suggestions for further reading -- References -- 7: Fundamental thresholds in compressed sensing: a high-dimensional geometry approach -- 7.1 Introduction -- 7.1.1 Threshold bounds for L1 minimization robustness -- 7.1.2 Weighted and iterative reweighted L1 minimization thresholds -- 7.1.3 Comparisons with other threshold bounds -- 7.1.4 Some concepts in high-dimensional geometry -- 7.1.5 Organization -- 7.2 The null space characterization -- 7.3 The Grassmann angle framework for the null space characterization -- 7.4 Evaluating the threshold bound ζ -- 7.5 Computing the internal angle exponent -- 7.6 Computing the external angle exponent -- 7.7 Existence and scaling of ρN(δ, C) -- 7.8 ``Weak, '' ``sectional, '' and ``strong'' robustness -- 7.9 Numerical computations on the bounds of ζ -- 7.10 Recovery thresholds for weighted L1 minimization -- 7.11 Approximate support recovery and iterative reweighted L1 -- 7.12 Conclusion -- 7.13 Appendix -- 7.13.1 Derivation of the internal angles -- 7.13.2 Derivation of the external angles -- 7.13.3 Proof of Lemma 7.7 -- 7.13.4 Proof of Lemma 7.8 -- Acknowledgement -- References -- 8: Greedy algorithms for compressed sensing -- 8.1 Greed, a flexible alternative to convexification -- 8.2 Greedy pursuits -- 8.2.1 General framework -- 8.2.2 Variations in coefficient updates -- 8.2.3 Variations in element selection -- 8.2.4 Computational considerations. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24436831 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37563026 
938 |a Coutts Information Services  |b COUT  |n 22677219  |c 65.00 GBP 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL866824 
938 |a ebrary  |b EBRY  |n ebr10578314 
938 |a EBSCOhost  |b EBSC  |n 438963 
938 |a YBP Library Services  |b YANK  |n 9245199 
938 |a YBP Library Services  |b YANK  |n 8796341 
938 |a YBP Library Services  |b YANK  |n 9315770 
938 |a YBP Library Services  |b YANK  |n 9914390 
994 |a 92  |b IZTAP