Cargando…

Young Measures and Compactness in Measure Spaces.

Many problems in science can be formulated in the language of optimization theory, in which case an optimal solution or the best response to a particular situation is required. In situations of interest, such classical optimal solutions are lacking, or at least, the existence of such solutions is fa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Florescu, Liviu C.
Otros Autores: Godet-Thobie, Christiane
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn796384258
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120625s2012 gw ob 001 0 eng d
010 |z  2012001629 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d E7B  |d CDX  |d OCLCO  |d IDEBK  |d N$T  |d OCLCF  |d DEBSZ  |d OCLCQ  |d KZC  |d OCLCQ  |d S3O  |d OCLCQ  |d AGLDB  |d MOR  |d OCLCO  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d DEGRU  |d U3W  |d STF  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d LEAUB  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d UKCRE  |d U9X  |d AUD  |d EYM  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 804049068  |a 819816943  |a 821020818  |a 961612057  |a 962665028  |a 988521077  |a 992029578  |a 1037764768  |a 1038695208  |a 1045550729  |a 1058116063  |a 1058548195  |a 1086926132  |a 1153461179  |a 1259170737 
020 |a 9783110280517  |q (electronic bk.) 
020 |a 3110280515  |q (electronic bk.) 
020 |z 9783110280524 
020 |z 3110280523 
020 |z 3110280515 
020 |z 3110276402 
020 |z 9783110276404 
020 |z 9781283857918 
020 |z 128385791X 
024 1 |a 99953707715 
024 7 |a 10.1515/9783110280517  |2 doi 
029 1 |a AU@  |b 000053301222 
029 1 |a CHBIS  |b 010396772 
029 1 |a CHVBK  |b 331227932 
029 1 |a DEBBG  |b BV043166619 
029 1 |a DEBBG  |b BV044164067 
029 1 |a DEBSZ  |b 397282400 
029 1 |a DEBSZ  |b 421375019 
029 1 |a DEBSZ  |b 431128294 
029 1 |a DEBSZ  |b 478282648 
029 1 |a NZ1  |b 15338600 
035 |a (OCoLC)796384258  |z (OCoLC)804049068  |z (OCoLC)819816943  |z (OCoLC)821020818  |z (OCoLC)961612057  |z (OCoLC)962665028  |z (OCoLC)988521077  |z (OCoLC)992029578  |z (OCoLC)1037764768  |z (OCoLC)1038695208  |z (OCoLC)1045550729  |z (OCoLC)1058116063  |z (OCoLC)1058548195  |z (OCoLC)1086926132  |z (OCoLC)1153461179  |z (OCoLC)1259170737 
037 |a 417041  |b MIL 
050 4 |a QA312 .F56 2012 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a QA  |2 lcco 
082 0 4 |a 515.42  |a 515/.42 
084 |a SK 430  |2 rvk 
049 |a UAMI 
100 1 |a Florescu, Liviu C. 
245 1 0 |a Young Measures and Compactness in Measure Spaces. 
260 |a Berlin :  |b De Gruyter,  |c 2012. 
300 |a 1 online resource (352 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a Many problems in science can be formulated in the language of optimization theory, in which case an optimal solution or the best response to a particular situation is required. In situations of interest, such classical optimal solutions are lacking, or at least, the existence of such solutions is far from easy to prove. So, non-convex optimization problems may not possess a classical solution because approximate solutions typically show rapid oscillations. This phenomenon requires the extension of such problems' solution often constructed by means of Young measures. This book is written to int. 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t Preface --  |t Contents --  |t Chapter 1. Weak Compactness in Measure Spaces --  |t Chapter 2. Bounded Measures on Topological Spaces --  |t Chapter 3. Young Measures --  |t Bibliography --  |t Index --  |t About the Authors. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Spaces of measures. 
650 0 |a Measure theory. 
650 0 |a Mathematical optimization. 
650 4 |a Bounded Measures. 
650 4 |a Measure Spaces. 
650 4 |a Topological Spaces. 
650 4 |a Weak Compactness. 
650 4 |a Young Measures. 
650 6 |a Espaces de mesures. 
650 6 |a Théorie de la mesure. 
650 6 |a Optimisation mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Measure theory  |2 fast 
650 7 |a Spaces of measures  |2 fast 
650 7 |a Maßraum  |2 gnd 
650 7 |a Kompaktheit  |2 gnd 
650 7 |a Young-Maß  |2 gnd 
700 1 |a Godet-Thobie, Christiane. 
776 0 8 |i Print version:  |a Florescu, Liviu C.  |t Young Measures and Compactness in Measure Spaces.  |d Berlin : De Gruyter, ©2012  |z 9783110276404 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=471034  |z Texto completo 
880 0 |6 505-00/(S  |a Machine generated contents note: 1. Weak Compactness in Measure Spaces -- 1.1. Measure Spaces -- 1.2. Radon-Nikodym Theorem. The Dual of L1 -- 1.3. Convergences in L1(λ) and ca(A) -- 1.4. Weak Compactness in ca(A) and L1(λ) -- 1.5. The Bidual of L1(λ) -- 1.6. Extensions of Dunford-Pettis' Theorem -- 2. Bounded Measures on Topological Spaces -- 2.1. Regular Measures -- 2.2. Polish Spaces. Suslin Spaces -- 2.3. Narrow Topology -- 2.4.Compactness Results -- 2.5. Metrics on the Space (Rca+(BT), J) -- 2.5.1. Dudley's Metric -- 2.5.2. Levy-Prohorov's Metric -- 2.6. Wiener Measure -- 3. Young Measures -- 3.1. Preliminaries -- 3.1.1. Disintegration -- 3.1.2. Integrands -- 3.2. Definitions and Examples -- 3.2.1. Young Measure Associated to a Probability -- 3.2.2. Young Measure Associated to a Measurable Mapping -- 3.3. The Stable Topology -- 3.4. The Subspace M(S) [⊂] y(S) -- 3.5.Compactness -- 3.6. Biting Lemma -- 3.7. Product of Young Measures -- 3.7.1. Fiber Product. 
880 0 |6 505-00/(S  |a Contents note continued: 3.7.2. Tensor Product -- 3.8. Jordan Finite Tight Sets -- 3.9. Strong Compactness in Lp(μ, E) -- 3.9.1. Visintin-Balder's Theorem -- 3.9.2. Rossi-Savare's Theorem -- 3.10. Gradient Young Measures -- 3.10.1. Young Measures Generated by Sequences -- 3.10.2. Quasiconvex Functions -- 3.10.3. Lower Semicontinuity -- 3.11. Relaxed Solutions in Variational Calculus. 
938 |a YBP Library Services  |b YANK  |n 7624815 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 417041 
938 |a EBSCOhost  |b EBSC  |n 471034 
938 |a ebrary  |b EBRY  |n ebr10582262 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL893352 
938 |a De Gruyter  |b DEGR  |n 9783110280517 
938 |a Coutts Information Services  |b COUT  |n 24364361 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25312613 
994 |a 92  |b IZTAP