Cargando…

Geophysical data analysis : discrete inverse theory /

Since 1984, Geophysical Data Analysis has filled the need for a short, concise reference on inverse theory for individuals who have an intermediate background in science and mathematics. The new edition maintains the accessible and succinct manner for which it is known, with the addition of: MATLAB...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Menke, William (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Elsevier/Academic Press, 2012.
Edición:MATLAB edition; third edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn795910048
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120620s2012 mau ob 001 0 eng d
010 |a  2012000457 
040 |a OPELS  |b eng  |e pn  |c OPELS  |d N$T  |d YDXCP  |d OCLCQ  |d CDX  |d OCLCQ  |d B24X7  |d CUS  |d OCLCF  |d NLE  |d OCLCQ  |d ICA  |d AGLDB  |d K6U  |d VGM  |d OCLCQ  |d NJR  |d U3W  |d OCLCQ  |d D6H  |d VTS  |d COCUF  |d INT  |d COO  |d OCLCQ  |d WYU  |d VT2  |d OCLCQ  |d STF  |d AUD  |d LEAUB  |d HS0  |d OCLCO  |d OCLCQ 
019 |a 860501141  |a 1066574713  |a 1081296165  |a 1228530812 
020 |a 9780123977847  |q (electronic bk.) 
020 |a 0123977843  |q (electronic bk.) 
020 |a 9781283735124 
020 |a 1283735121 
020 |z 9780123971609 
020 |z 0123971608 
029 1 |a AU@  |b 000049617808 
029 1 |a CHBIS  |b 009942932 
029 1 |a CHVBK  |b 302911855 
029 1 |a DEBBG  |b BV042308387 
029 1 |a DEBSZ  |b 368578836 
029 1 |a DEBSZ  |b 481268944 
029 1 |a GBVCP  |b 804020647 
029 1 |a NZ1  |b 14297173 
035 |a (OCoLC)795910048  |z (OCoLC)860501141  |z (OCoLC)1066574713  |z (OCoLC)1081296165  |z (OCoLC)1228530812 
037 |a 404762  |b MIL 
050 4 |a QC802.A1 
072 7 |a SCI  |x 030000  |2 bisacsh 
072 7 |a SCI  |x 031000  |2 bisacsh 
082 0 4 |a 551  |2 23 
049 |a UAMI 
100 1 |a Menke, William,  |e author. 
245 1 0 |a Geophysical data analysis :  |b discrete inverse theory /  |c William Menke. 
250 |a MATLAB edition; third edition. 
260 |a Waltham, MA :  |b Elsevier/Academic Press,  |c 2012. 
300 |a 1 online resource (xiii, 293 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Since 1984, Geophysical Data Analysis has filled the need for a short, concise reference on inverse theory for individuals who have an intermediate background in science and mathematics. The new edition maintains the accessible and succinct manner for which it is known, with the addition of: MATLAB examples and problem setsAdvanced color graphicsCoverage of new topics, including Adjoint Methods; Inversion by Steepest Descent, Monte Carlo and Simulated Annealing methods; and Bootstrap algorithm for determining empirical confidence intervalsOnline data sets and MATLAB scripts that can be used as an inverse theory tutorial. Additional material on probability, including Bayesian influence, probability density function, and metropolis algorithmDetailed discussion of application of inverse theory to tectonic, gravitational and geomagnetic studiesNumerous examples and end-of-chapter homework problems help you explore and further understand the ideas presentedUse as classroom text facilitated by a complete set of exemplary lectures in Microsoft PowerPoint format and homework problem solutions for instructors. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Geophysical Data Analysis: Discrete Inverse Theory; Copyright; Dedication; Preface; Reference; Companion Web Site; Contents; Introduction; I.1. Forward and Inverse Theories; I.2. MatLab as a Tool for Learning Inverse Theory; I.3. A Very Quick MatLab Tutorial; I.4. Review of Vectors and Matrices and Their Representation in MatLab; I.5. Useful MatLab Operations; I.5.1. Loops; I.5.2. Loading Data from a File; I.5.3. Plotting Data; I.5.4. Creating Character Strings Containing the Values of Variables; I.5.4 References; Chapter 1: Describing Inverse Problems 
505 8 |a 1.1. Formulating Inverse Problems1.1.1. Implicit Linear Form; 1.1.2. Explicit Form; 1.1.3. Explicit Linear Form; 1.2. The Linear Inverse Problem; 1.3. Examples of Formulating Inverse Problems; 1.3.1. Example 1: Fitting a Straight Line; 1.3.2. Example 2: Fitting a Parabola; 1.3.3. Example 3: Acoustic Tomography; 1.3.4. Example 4: X-ray Imaging; 1.3.5. Example 5: Spectral Curve Fitting; 1.3.6. Example 6: Factor Analysis; 1.4. Solutions to Inverse Problems; 1.4.1. Estimates of Model Parameters; 1.4.2. Bounding Values; 1.4.3. Probability Density Functions 
505 8 |a 1.4.4. Sets of Realizations of Model Parameters1.4.5. Weighted Averages of Model Parameters; 1.5. Problems; 1.5 References; Chapter 2: Some Comments on Probability Theory; 2.1. Noise and Random Variables; 2.2. Correlated Data; 2.3. Functions of Random Variables; 2.4. Gaussian Probability Density Functions; 2.5. Testing the Assumption of Gaussian Statistics; 2.6. Conditional Probability Density Functions; 2.7. Confidence Intervals; 2.8. Computing Realizations of Random Variables; 2.9. Problems; 2.9 References; Chapter 3: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 1 
505 8 |a 3.1. The Lengths of Estimates3.2. Measures of Length; 3.3. Least Squares for a Straight Line; 3.4. The Least Squares Solution of the Linear Inverse Problem; 3.5. Some Examples; 3.5.1. The Straight Line Problem; 3.5.2. Fitting a Parabola; 3.5.3. Fitting a Plane Surface; 3.6. The Existence of the Least Squares Solution; 3.6.1. Underdetermined Problems; 3.6.2. Even-Determined Problems; 3.6.3. Overdetermined Problems; 3.7. The Purely Underdetermined Problem; 3.8. Mixed-Determined Problems; 3.9. Weighted Measures of Length as a Type of A Priori Information; 3.9.1. Weighted Least Squares 
505 8 |a 3.9.2. Weighted Minimum Length3.9.3. Weighted Damped Least Squares; 3.10. Other Types of A Priori Information; 3.10.1. Example: Constrained Fitting of a Straight Line; 3.11. The Variance of the Model Parameter Estimates; 3.12. Variance and Prediction Error of the Least Squares Solution; 3.13. Problems; 3.13References; Chapter 4: Solution of the Linear, Gaussian Inverse Problem, Viewpoint 2; 4.1. Solutions Versus Operators; 4.2. The Data Resolution Matrix; 4.3. The Model Resolution Matrix; 4.4. The Unit Covariance Matrix; 4.5. Resolution and Covariance of Some Generalized Inverses 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Geophysics  |x Measurement. 
650 0 |a Oceanography  |x Measurement. 
650 0 |a Inverse problems (Differential equations)  |x Numerical solutions. 
650 6 |a Problèmes inverses (Équations différentielles)  |x Solutions numériques. 
650 7 |a SCIENCE  |x Earth Sciences  |x Geography.  |2 bisacsh 
650 7 |a SCIENCE  |x Earth Sciences  |x Geology.  |2 bisacsh 
650 7 |a Geophysics  |x Measurement.  |2 fast  |0 (OCoLC)fst00941024 
650 7 |a Inverse problems (Differential equations)  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00978099 
650 7 |a Oceanography  |x Measurement.  |2 fast  |0 (OCoLC)fst01043696 
776 0 8 |i Print version:  |a Menke, William.  |t Geophysical data analysis.  |b Matlab ed., 3rd ed.  |d Waltham, MA : Academic Press, 2012  |z 9780123971609  |w (DLC) 2012000457  |w (OCoLC)767566142 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457358  |z Texto completo 
938 |a Books 24x7  |b B247  |n bke00049247 
938 |a Coutts Information Services  |b COUT  |n 24146242 
938 |a EBSCOhost  |b EBSC  |n 457358 
938 |a YBP Library Services  |b YANK  |n 7652618 
994 |a 92  |b IZTAP