|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn794370425 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
040217s2003 si a ob 000 0 eng |
040 |
|
|
|a AU@
|b eng
|e pn
|c AU@
|d N$T
|d IDEBK
|d I9W
|d OCLCF
|d YDXCP
|d EBLCP
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d STF
|d M8D
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 815752194
|a 1086498595
|
020 |
|
|
|a 9789812791221
|q (electronic bk.)
|
020 |
|
|
|a 9812791221
|q (electronic bk.)
|
020 |
|
|
|a 1281933767
|
020 |
|
|
|a 9781281933768
|
020 |
|
|
|z 9789812383778
|
020 |
|
|
|z 9812383778
|
020 |
|
|
|z 9812791221
|
029 |
0 |
|
|a AU@
|b 000049162640
|
029 |
1 |
|
|a DEBBG
|b BV043145231
|
029 |
1 |
|
|a DEBSZ
|b 421299657
|
029 |
1 |
|
|a GBVCP
|b 804002835
|
035 |
|
|
|a (OCoLC)794370425
|z (OCoLC)815752194
|z (OCoLC)1086498595
|
050 |
|
4 |
|a QA276.A12
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
072 |
|
7 |
|a PBT
|2 bicssc
|
082 |
0 |
4 |
|a 519.5
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Akahira, Masafumi,
|d 1945-
|
245 |
1 |
0 |
|a Joint statistical papers of Akahira and Takeuchi /
|c editors, Masafumi Akahira, Kei Takeuchi.
|
260 |
|
|
|a Singapore ;
|a River Edge, NJ :
|b World Scientific,
|c Ã2003.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a "This volume consists of 44 joint papers on statistical inference ... from 1975 to 2001"--Page vii.
|
504 |
|
|
|a Includes bibliographical references.
|
520 |
|
|
|a Masafumi Akahira and Kei Takeuchi have collaborated in research on mathematical statistics for nearly thirty years and have published many articles and papers. This volume is a collection of their papers, some published in well-known and others in lesser-known journals. The papers cover various fields, but the main subject is the theory of estimation -- asymptotic, non-regular, sequential, etc. All the papers are theoretical in nature, but have implications for applied problems.
|
505 |
0 |
|
|a 1975. 1. Characterizations of prediction sufficiency (Adequacy) in terms of risk functions -- 1976. 2. On the second order asymptotic efficiency of estimators in multiparameter cases -- 3. On Gram-Charlier-Edgeworth type expansion of the sums of random variables (I) -- 4. On Gram-Charlier-Edgeworth type expansion of the sums of random variables (II) -- 5. On the second order asymptotic efficiencies of estimators -- 1977. 6. Extension of Edgeworth type expansion of the distribution of the sums of I.I.D. random variables in non-regular cases -- 1978. 7. On Gram-Charlier-Edgeworth type expansion of the sums of random variables (III) multivariate cases -- 8. Third order asymptotic efficiency of maximum likelihood estimator for multiparameter exponential case -- 9. Asymptotic optimality of the generalized bayes estimator -- 1979. 10. On the second order asymptotic efficiency of unbiased confidence intervals -- 11. Remarks on the asymptotic efficiency and inefficiency of maximum probability estimators -- 12. Discretized likelihood methods -- asymptotic properties of discretized likelihood estimators (DLE's) -- 13. Asymptotic optimality of the generalized bayes estimator in multiparameter cases -- 14. Note on non-regular asymptotic estimation -- what "non-regularity" implies -- 1980. 15. A note on prediction sufficiency (adequacy) and sufficiency -- 16. Third order asymptotic efficiency and asymptotic completeness of estimators -- 1982. 17. On asymptotic deficiency of estimators in pooled samples in the presence of nuisance parameters -- 1985. 18. Estimation of a common parameter for pooled samples from the uniform distributions -- 19. A note on the minimum variance unbiased estimation when the Fisher information is infinity -- 1986. 20. Bhattacharyya bound of variances of unbiased estimators in non-regular cases / with Madan L. Puri -- 21. A note on minimum variance -- 22. A note on optimum spacing of observations from a continuous time simple Markov process -- 23. On the bound of the asymptotic distribution of estimators when the maximum order of consistency depends on the parameter.
|
505 |
8 |
|
|a 1987. 24. On the definition of asymptotic expectation -- 25. Locally minimum variance unbiased estimator in a discontinuous density function -- 26. The lower bound for the variance of unbiased estimators for one-directional family of distributions -- 1988. 27. Second order asymptotic efficiency in terms of asymptotic variances of the sequential maximum likelihood estimation procedures -- 28. Second and third order asymptotic completeness of the class of estimators / with F. Hirakawa -- 1989. 29. Higher order asymptotics in estimation for two-sided Weibull type distributions -- 30. Third order asymptotic efficiency of the sequential maximum likelihood estimation procedure sequential -- 1990. 31. First order asymptotic efficiency in semiparametric models implies infinite asymptotic deficiency -- 32. Loss of information associated with the order statistics and related estimators in the double exponential distribution case -- 1991. 33. Bootstrap method and empirical process -- 34. Second order asymptotic efficiency in terms of the asymptotic variance of sequential estimation procedures in the presence of nuisance parameters -- 35. Asymptotic efficiency of estimators for a location parameter family of densities with the bounded support -- 36. A definition of information amount applicable to non-regular cases -- 1992. 37. Unbiased estimation in sequential binomial sampling / with K. Koike -- 38. Interval estimation with varying confidence levels -- 1993. 39. Second order asymptotic bound for the variance of estimators for the double exponential distribution -- 40. On the application of the Minkowski-Farkas theorem to sampling designs -- 1997. 41. Randomized confidence intervals of a parameter for a family of discrete exponential type distributions / with K. Takahashi -- 42. The existence of a test with the largest order of consistency in the case of a two-sided gamma type distribution -- 1999. 43. The higher order large-deviation approximation for the distribution of the sum of independent discrete random variables / with K. Takahashi -- 2001. 44. Information inequalities in a family of uniform distributions.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Mathematical statistics.
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical statistics.
|2 fast
|0 (OCoLC)fst01012127
|
700 |
1 |
|
|a Takeuchi, Kei,
|d 1945-
|
776 |
1 |
|
|z 9812383778
|
776 |
1 |
|
|z 9789812383778
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514671
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24684946
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3051224
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 514671
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 193376
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9966250
|
994 |
|
|
|a 92
|b IZTAP
|