Operator Calculus on Graphs : Theory and Applications in Computer Science.
This pioneering book presents a study of the interrelationships among operator calculus, graph theory, and quantum probability in a unified manner, with significant emphasis on symbolic computations and an eye toward applications in computer science. Presented in this book are new methods, built on...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific,
2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Preface; Acknowledgments; Contents; Combinatorial Algebras and Their Properties; 1. Introduction; 1.1 Notational Preliminaries; 2. Combinatorial Algebra; 2.1 Six Group and Semigroup Algebras; 2.1.1 The group of blades Bp, q; 2.1.1.1 Involutions; 2.1.1.2 The n-dimensional hypercube Qn; 2.1.2 The abelian blade group Bp, q sym; 2.1.3 The null blade semigroup; 2.1.4 The abelian null blade semigroup sym; 2.1.5 The semigroup of idempotent blades idem; 2.1.6 The path semigroup n; 2.1.7 Summary; 2.1.7.1 Algebras I-IV; 2.1.7.2 Algebra V; 2.1.7.3 Algebra VI; 2.2 Clifford and Grassmann Algebras.
- 2.2.1 Grassmann (exterior) algebras2.2.2 Clifford algebras; 2.2.3 Operator calculus on Clifford algebras; 2.3 The Symmetric Clifford Algebra sym; 2.4 The Idempotent-Generated Algebra idem; 2.5 The n-Particle Zeon Algebra nil; 2.6 Generalized Zeon Algebras; 3. Norm Inequalities on Clifford Algebras; 3.1 Norms on C p; q; 3.2 Generating Functions; 3.3 Clifford Matrices and the Clifford-Frobenius Norm; 3.4 Powers of Clifford Matrices; Combinatorics and Graph Theory; 4. Specialized Adjacency Matrices; 4.1 Essential Graph Theory; 4.2 Clifford Adjacency Matrices; 4.3 Nilpotent Adjacency Matrices.
- 4.3.1 Euler circuits4.3.2 Conditional branching; 4.3.3 Time-homogeneous random walks on finite graphs; 5. Random Graphs; 5.1 Preliminaries; 5.2 Cycles in Random Graphs; 5.3 Convergence of Moments; 6. Graph Theory and Quantum Probability; 6.1 Concepts; 6.1.1 Operators as random variables; 6.1.2 Operators as adjacency matrices; 6.2 From Graphs to Quantum Random Variables; 6.2.1 Nilpotent adjacency operators in infinite spaces; 6.2.2 Decomposition of nilpotent adjacency operators; 6.3 Connected Components in Graph Processes; 6.3.1 Algebraic preliminaries; 6.3.2 Connected components.
- 6.3.2.1 (k, d)-components6.3.3 Second quantization of graph processes; 7. Geometric Graph Processes; 7.1 Preliminaries; 7.2 Dynamic Graph Processes; 7.2.1 Vertex degrees in Gn; 7.2.2 Energy and Laplacian energy of geometric graphs; 7.2.3 Convergence conditions and a limit theorem; 7.3 Time-Homogeneous Walks on Random Geometric Graphs; Probability on Algebraic Structures; 8. Time-Homogeneous Random Walks; 8.1 sym and Random Walks on Hypercubes; 8.2 Multiplicative Walks on C p, q; 8.2.1 Walks on directed hypercubes; 8.2.2 Random walks on directed hypercubes with loops.
- 8.2.3 Properties of multiplicative walks8.3 Induced Additive Walks on C p, q; 8.3.1 Variance of N; 8.3.2 Variance of; 8.3.3 Central limit theorems; 9. Dynamic Walks in Clifford Algebras; 9.1 Preliminaries; 9.2 Expectation; 9.3 Limit Theorems; 9.3.1 Conditions for convergence; 9.3.2 Induced additive walks; 9.3.3 Central limit theorem; 10. Iterated Stochastic Integrals; 10.1 Preliminaries; 10.2 Stochastic Integrals in; 10.3 Graph-Theoretic Iterated Stochastic Integrals; 10.3.1 Functions on partitions; 10.3.2 The Clifford evolution matrix; 10.3.3 Orthogonal polynomials.