Cargando…

Global Solution Curves for Semilinear Elliptic Equations.

This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Korman, Philip, 1951-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn794328379
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120528s2012 si ob 000 0 eng d
010 |a  2011278922 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDXCP  |d N$T  |d VGM  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d LGG  |d E7B  |d I9W  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d LEAUB  |d UKCRE  |d AJS  |d MHW  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO 
016 7 |a 016010306  |2 Uk 
019 |a 793804673  |a 960207404  |a 966203882  |a 988433459  |a 991961342  |a 1037783790  |a 1038664849  |a 1045513881  |a 1055335866  |a 1066650572  |a 1081209772  |a 1086429590  |a 1086977806  |a 1153562027  |a 1228578741  |a 1259215952  |a 1264893697  |a 1297221028  |a 1297774687 
020 |a 9789814374354  |q (electronic bk.) 
020 |a 9814374350  |q (electronic bk.) 
020 |a 9789814374347 
020 |a 9814374342 
020 |a 1280669756 
020 |a 9781280669750 
020 |a 9786613646682 
020 |a 6613646687 
029 1 |a AU@  |b 000054187913 
029 1 |a DEBBG  |b BV043081541 
029 1 |a DEBBG  |b BV044165370 
029 1 |a DEBSZ  |b 372596517 
029 1 |a DEBSZ  |b 379327724 
029 1 |a DEBSZ  |b 421411910 
029 1 |a DEBSZ  |b 454997418 
029 1 |a NZ1  |b 15912984 
029 1 |a AU@  |b 000073139294 
035 |a (OCoLC)794328379  |z (OCoLC)793804673  |z (OCoLC)960207404  |z (OCoLC)966203882  |z (OCoLC)988433459  |z (OCoLC)991961342  |z (OCoLC)1037783790  |z (OCoLC)1038664849  |z (OCoLC)1045513881  |z (OCoLC)1055335866  |z (OCoLC)1066650572  |z (OCoLC)1081209772  |z (OCoLC)1086429590  |z (OCoLC)1086977806  |z (OCoLC)1153562027  |z (OCoLC)1228578741  |z (OCoLC)1259215952  |z (OCoLC)1264893697  |z (OCoLC)1297221028  |z (OCoLC)1297774687 
050 4 |a QA374 .K384 2012 
072 7 |a MAT  |x 007000  |2 bisacsh 
082 0 4 |a 515.35 
049 |a UAMI 
100 1 |a Korman, Philip,  |d 1951- 
245 1 0 |a Global Solution Curves for Semilinear Elliptic Equations. 
260 |a Singapore :  |b World Scientific,  |c 2012. 
300 |a 1 online resource (254 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface; Contents; 1. Curves of Solutions on General Domains; 1.1 Continuation of solutions; 1.2 Symmetric domains in R2; 1.3 Turning points and the Morse index; 1.4 Convex domains in R2; 1.5 Pohozaev's identity and non-existence of solutions for elliptic systems; 1.5.1 Non-existence of solutions in the presence of supercritical and lower order terms; 1.5.2 Non-existence of solutions for a class of systems; 1.5.3 Pohozhaev's identity for a version of p-Laplace equation; 1.6 Problems at resonance; 2. Curves of Solutions on Balls; 2.1 Preliminary results. 
505 8 |a 2.2 Positivity of solution to the linearized problem2.3 Uniqueness of the solution curve; 2.4 Direction of a turn and exact multiplicity; 2.5 On a class of concave-convex equations; 2.6 Monotone separation of graphs; 2.7 The case of polynomial f(u) in two dimensions; 2.8 The case when f(0) <0; 2.9 Symmetry breaking; 2.10 Special equations; 2.11 Oscillations of the solution curve; 2.11.1 Asymptotics of some oscillatory integrals; 2.11.2 Reduction to the oscillatory integrals; 2.12 Uniqueness for non-autonomous problems; 2.12.1 Radial symmetry for the linearized equation. 
505 8 |a 2.13 Exact multiplicity for non-autonomous problems2.14 Numerical computation of solutions; 2.14.1 Using power series approximation; 2.14.2 Application to singular solutions; 2.15 Radial solutions of Neumann problem; 2.15.1 A computer assisted study of ground state solutions; 2.16 Global solution curves for a class of elliptic systems; 2.16.1 Preliminary results; 2.16.2 Global solution curves for Hamiltonian systems; 2.16.3 A class of special systems; 2.17 The case of a "thin" annulus; 2.18 A class of p-Laplace problems; 3. Two Point Boundary Value Problems. 
505 8 |a 3.1 Positive solutions of autonomous problems3.2 Direction of the turn; 3.3 Stability and instability of solutions; 3.3.1 S-shaped curves of combustion theory; 3.3.2 An extension of the stability condition; 3.4 S-shaped solution curves; 3.5 Computing the location and the direction of bifurcation; 3.5.1 Sign changing solutions; 3.6 A class of symmetric nonlinearities; 3.7 General nonlinearities; 3.8 Infinitely many curves with pitchfork bifurcation; 3.9 An oscillatory bifurcation from zero: A model example; 3.10 Exact multiplicity for Hamiltonian systems; 3.11 Clamped elastic beam equation. 
505 8 |a 3.11.1 Preliminary results3.11.2 Exact multiplicity of solutions; 3.12 Steady states of convective equations; 3.13 Quasilinear boundary value problems; 3.13.1 Numerical computations for the prescribed mean curvature equation; 3.14 The time map for quasilinear equations; 3.15 Uniqueness for a p-Laplace case; Bibliography. 
520 |a This book provides an introduction to the bifurcation theory approach to global solution curves and studies the exact multiplicity of solutions for semilinear Dirichlet problems, aiming to obtain a complete understanding of the solution set. This understanding opens the way to efficient computation of all solutions. Detailed results are obtained in case of circular domains, and some results for general domains are also presented. The author is one of the original contributors to the field of exact multiplicity results. 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 231-241). 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Differential equations, Elliptic. 
650 0 |a Mathematical analysis. 
650 6 |a Équations différentielles elliptiques. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Differential equations, Elliptic  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
776 0 8 |i Print version:  |a Korman, Philip.  |t Global Solution Curves for Semilinear Elliptic Equations.  |d Singapore : World Scientific, ©2012  |z 9789814374347 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457181  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25565416 
938 |a EBL - Ebook Library  |b EBLB  |n EBL919083 
938 |a ebrary  |b EBRY  |n ebr10563574 
938 |a EBSCOhost  |b EBSC  |n 457181 
938 |a YBP Library Services  |b YANK  |n 7466853 
994 |a 92  |b IZTAP