Cargando…

Nonadiabatic Transition : Concepts, Basic Theories and Applications.

Nonadiabatic transition is a highly multidisciplinary concept and phenomenon, constituting a fundamental mechanism of state and phase changes in various dynamical processes of physics, chemistry and biology, such as molecular dynamics, energy relaxation, chemical reaction, and electron and proton tr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nakamura, Hiroki
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface to the Second Edition; Preface to the First Edition; Contents; Chapter 1. Introduction: What is "Nonadiabatic Transition"?; Chapter 2. Multi-Disciplinarity; 2.1 Physics; 2.2 Chemistry; 2.3 Biology; 2.4 Economics; Chapter 3. Historical Survey of Theoretical Studies; 3.1 Landau-Zener-Stueckelberg Theory; 3.2 Rosen-Zener-Demkov Theory; 3.3 Nikitin's Exponential Model; 3.4 Nonadiabatic Transition Due to Coriolis Coupling and Dynamical State Representation; Chapter 4. Background Mathematics; 4.1 Wentzel-Kramers-Brillouin Semiclassical Theory; 4.2 Stokes Phenomenon.
  • Chapter 5. Basic Two-State Theory for Time-Independent Processes5.1 Exact Solutions of the Linear Curve Crossing Problems; 5.1.1 Landau-Zener type; 5.1.2 Nonadiabatic tunneling type; 5.2 Complete Semiclassical Solutions of General Curve Crossing Problems; 5.2.1 Landau-Zener (LZ) type; 5.2.1.1 E EX (b2 0); 5.2.1.2 E EX (b2 0); 5.2.1.3 Numerical examples; 5.2.2 Nonadiabatic Tunneling (NT) Type; 5.2.2.1 E Et (b2 -1); 5.2.2.2 Et E Eb (b2 1); 5.2.2.3 E Eb (b2 1); 5.2.2.4 Complete reflection; 5.2.2.5 Numerical examples; 5.3 Non-Curve-Crossing Case; 5.3.1 Rosen-Zener-Demkov model.
  • 5.3.2 Diabatically avoided crossing model5.4 Exponential Potential Model: Unification of the Landau-Zener and Rosen-Zener Models; 5.4.1 Model 1
  • Exact Solution; 5.4.2 Model 2
  • Exact Solution; 5.4.3 Model 3
  • Semiclassical Solution; 5.5 Mathematical Implications; 5.5.1 Case (i); 5.5.2 Case (ii); 5.5.3 Case (iii); Chapter 6. Basic Two-State Theory for Time-Dependent Processes; 6.1 Exact Solution of Quadratic Potential Problem; 6.2 Semiclassical Solution in General Case; 6.2.1 Two-crossing case: ß 0; 6.2.2 Diabatically avoided crossing case: ß 0; 6.3 Other Exactly Solvable Models.
  • (I) Case I: d = 0(ii) Case II: d = .1/2; (iii) Case III: d = 1/2; Chapter 7. Two-State Problems; 7.1 Diagrammatic Technique; 7.2 Inelastic Scattering; 7.3 Elastic Scattering with Resonances and Predissociation; 7.4 Perturbed Bound States; 7.5 Time-Dependent Periodic Crossing Problems; 7.6 Time-Dependent Nonlinear Equations Related to Bose-Einstein Condensate Problems; 7.7 Wave Packet Dynamics in a Linearly Chirped Laser Field; Chapter 8. Effects of Coupling to Phonons and Quantum Devices; 8.1 Effects of Coupling to Phonons; 8.2 Quantum Devices; Chapter 9. Multi-Channel Problems.
  • 9.1 Exactly Solvable Models9.1.1 Time-independent case; 9.1.2 Time-dependent case; 9.2 Semiclassical Theory of Time-Independent Multi-Channel Problems; 9.2.1 General framework; 9.2.1.1 Case of no closed channel (m=0); 9.2.1.2 Case of m 0 at energies higher than the bottom of the highest adiabatic potential; 9.2.1.3 Case of m 0 at energies lower than the bottom of the highest adiabatic potential; 9.2.2 Numerical example; 9.3 Time-Dependent Problems; Chapter 10. Multi-Dimensional Problems; 10.1 Classification of Surface Crossing; 10.1.1 Crossing seam; 10.1.2 Conical intersection.