|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBSCO_ocn794328360 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120528s2011 si o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d N$T
|d YDXCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d AGLDB
|d LIP
|d ZCU
|d MERUC
|d OCLCQ
|d UUM
|d OCLCQ
|d VTS
|d ICG
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1087377793
|a 1264896805
|a 1297302101
|a 1297523284
|
020 |
|
|
|a 9789814368650
|q (electronic bk.)
|
020 |
|
|
|a 9814368652
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000054187908
|
029 |
1 |
|
|a DEBBG
|b BV043081487
|
029 |
1 |
|
|a DEBBG
|b BV044165355
|
029 |
1 |
|
|a DEBSZ
|b 379327597
|
029 |
1 |
|
|a DEBSZ
|b 421412070
|
029 |
1 |
|
|a DEBSZ
|b 454997299
|
029 |
1 |
|
|a AU@
|b 000073139089
|
035 |
|
|
|a (OCoLC)794328360
|z (OCoLC)1087377793
|z (OCoLC)1264896805
|z (OCoLC)1297302101
|z (OCoLC)1297523284
|
050 |
|
4 |
|a QA567.2.E44 H53 2012
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/52
|a 516.352
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hida, Haruzo.
|
245 |
1 |
0 |
|a Geometric Modular Forms and Elliptic Curves.
|
250 |
|
|
|a 2nd ed.
|
260 |
|
|
|a Singapore :
|b World Scientific,
|c 2011.
|
300 |
|
|
|a 1 online resource (468 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Preface to the second edition; Preface; Contents; 1. An Algebro-Geometric Tool Box; 1.1 Sheaves; 1.1.1 Sheaves and Presheaves; 1.1.2 Sheafication; 1.1.3 Sheaf Kernel and Cokernel; 1.2 Schemes; 1.2.1 Local Ringed Spaces; 1.2.2 Schemes as Local Ringed Spaces; 1.2.3 Sheaves over Schemes; 1.2.4 Topological Properties of Schemes; 1.3 Projective Schemes; 1.3.1 Graded Rings; 1.3.2 Functor Proj; 1.3.3 Sheaves on Projective Schemes; 1.4 Categories and Functors; 1.4.1 Categories; 1.4.2 Functors; 1.4.3 Schemes as Functors; 1.4.4 Abelian Categories; 1.5 Applications of the Key-Lemma.
|
505 |
8 |
|
|a 1.5.1 Sheaf of Differential Forms on Schemes1.5.2 Fiber Products; 1.5.3 Inverse Image of Sheaves; 1.5.4 Affine Schemes; 1.5.5 Morphisms into a Projective Space; 1.6 Group Schemes; 1.6.1 Group Schemes as Functors; 1.6.2 Kernel and Cokernel; 1.6.3 Bialgebras; 1.6.4 Locally Free Groups; 1.6.5 Schematic Representations; 1.7 Cartier Duality; 1.7.1 Duality of Bialgebras; 1.7.2 Duality of Locally Free Groups; 1.8 Quotients by a Group Scheme; 1.8.1 Naive Quotients; 1.8.2 Categorical Quotients; 1.8.3 Geometric Quotients; 1.9 Morphisms; 1.9.1 Topological Definitions; 1.9.2 Diffeo-Geometric Definitions.
|
505 |
8 |
|
|a 1.9.3 Applications1.10 Cohomology of Coherent Sheaves; 1.10.1 Coherent Cohomology; 1.10.2 Summary of Known Facts; 1.10.3 Cohomological Dimension; 1.11 Descent; 1.11.1 Covering Data; 1.11.2 Descent Data; 1.11.3 Descent of Schemes; 1.12 Barsotti-Tate Groups; 1.12.1 p-Divisible Abelian Sheaf; Exercise; 1.12.2 Connected- Etale Exact Sequence; 1.12.3 Ordinary Barsotti-Tate Group; 1.13 Formal Scheme; 1.13.1 Open Subschemes as Functors; Exercises; 1.13.2 Examples of Formal Schemes; 1.13.3 Deformation Functors; 1.13.4 Connected Formal Groups; 2. Elliptic Curves; 2.1 Curves and Divisors.
|
505 |
8 |
|
|a 2.1.1 Cartier Divisors2.1.2 Serre-Grothendieck Duality; 2.1.3 Riemann-Roch Theorem; 2.1.4 Relative Riemann-Roch Theorem; 2.2 Elliptic Curves; 2.2.1 Definition; 2.2.2 Abel's Theorem; 2.2.3 Holomorphic Differentials; 2.2.4 Taylor Expansion of Differentials; 2.2.5 Weierstrass Equations of Elliptic Curves; 2.2.6 Moduli of Weierstrass Type; 2.3 Geometric Modular Forms of Level 1; 2.3.1 Functorial Definition; 2.3.2 Coarse Moduli Scheme; 2.3.3 Fields of Moduli; 2.4 Elliptic Curves over C; 2.4.1 Topological Fundamental Groups; 2.4.2 Classical Weierstrass Theory; 2.4.3 Complex Modular Forms.
|
505 |
8 |
|
|a 2.5 Elliptic Curves over p-Adic Fields2.5.1 Power Series Identities; 2.5.2 Universal Tate Curves; 2.5.3 Etale Covering of Tate Curves; 2.6 Level Structures; 2.6.1 Isogenies; 2.6.2 Level N Moduli Problems; 2.6.3 Generality of Elliptic Curves; 2.6.4 Proof of Theorem 2.6.8; Exercise; 2.6.5 Geometric Modular Forms of Level N; 2.7 L-Functions of Elliptic Curves; 2.7.1 L-Functions over Finite Fields; 2.7.2 Hasse-Weil L-Function; 2.8 Regularity; 2.8.1 Regular Rings; 2.8.2 Regular Moduli Varieties; 2.9 p-Ordinary Moduli Problems; 2.9.1 The Hasse Invariant; 2.9.2 Ordinary Moduli of p-Power Level.
|
505 |
8 |
|
|a 2.9.3 Irreducibility of p-Ordinary Moduli.
|
520 |
|
|
|a This book provides a comprehensive account of the theory of moduli spaces of elliptic curves (over integer rings) and its application to modular forms. The construction of Galois representations, which play a fundamental role in Wiles' proof of the Shimura-Taniyama conjecture, is given. In addition, the book presents an outline of the proof of diverse modularity results of two-dimensional Galois representations (including that of Wiles), as well as some of the author's new results in that direction. In this new second edition, a detailed description of Barsotti-Tate groups (including formal Li.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Curves, Elliptic.
|
650 |
|
0 |
|a Forms, Modular.
|
650 |
|
6 |
|a Courbes elliptiques.
|
650 |
|
6 |
|a Formes modulaires.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Curves, Elliptic
|2 fast
|
650 |
|
7 |
|a Forms, Modular
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Hida, Haruzo.
|t Geometric Modular Forms and Elliptic Curves.
|d Singapore : World Scientific, ©2011
|z 9789814368643
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457157
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL919059
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 457157
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7311952
|
994 |
|
|
|a 92
|b IZTAP
|