Cargando…

Plasmonics and plasmonic metamaterials : analysis and applications /

This book is a collection of the works of leading experts worldwide in the rapidly developing fields of plasmonics and metamaterials. These developments are promising to revolutionize ways of generating, controlling and processing light in the nanoscale. The technological applications range from nan...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Shvets, G. (Editor ), Tsukerman, Igor (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, N.J. : World Scientific, 2012.
Colección:World Scientific series in nanoscience and nanotechnology ; v. 4.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; Acknowledgment from I.T.; 1. Plasmonic Enhancement of Optical Properties by Isolated and Coupled Metal Nanoparticles; 1. Introduction; 2. Optical Enhancement due to Isolated Metal Nanospheres; 2.1. Surface plasmon modes of an isolated metal sphere; 2.2. Absorption enhancement; 2.3. Electroluminescence enhancement; 2.4. Photoluminescence enhancement; 3. Enhancement due to Coupled Metal Nanoparticles; 3.1. Coupled mode theory; 3.2. Solution for the field enhancement; 3.3. Enhancement results and discussion; 4. Implications; References.
  • 2. Chiral Photonic and Plasmonic Structures1. Introduction; 2. Transfer Matrix Method for Anisotropic Medium; 3. Chiral Media from Discrete Screw Operations; 4. Chiral Media from Continuous Screw Operation; 5. Conclusions; Acknowledgments; References; 3. Multipole Metamaterials; 1. Introduction; 2. Spatial Averaging for Meta-Molecules
  • Recalling the Role of Multipole Moments; 3. Light Propagation in Metamaterials Including Multipole Moments Up to the Second Order; 4. Multipolar Properties of Planar Meta-Molecules; 5. Multipole Near-Field Decomposition for Meta-Molecules.
  • 6. Summary and OutlookAcknowledgments; References; 4. Amplification and Lasing with Surface-Plasmon Polaritons; 1. Introduction; 2. Planar Metallic Surfaces; 2.1. Single metal-dielectric interface; 2.2. Thin metal film/stripe; 2.3. Metal-insulator-metal structure; 3. Metallic Nanocavities; 4. Metallic Nanoparticles; 5. Concluding Remarks; References; 5. Wavefront Engineering of Quantum Cascade Lasers Using Plasmonics; 1. Introduction; 1.1. Surface plasmons and Zenneck waves; 1.2. Quantum design and waveguide design of quantum cascade lasers.
  • 2. Methods to Tailor the Dispersion Properties of Mid-IR and THz Surface Plasmon Polaritons3. One-Dimensional Collimators for Mid-IR QCLs; 4. Two-Dimensional Collimators for Mid-IR QCLs; 5. Multi-Beam QCLs; 6. Mid-IR QCLs with Integrated Plasmonic Polarizers; 7. Bean Shaping of THz QCLs Using Plasmonics; 7.1. Semiconductor plasmonic second-order grating collimator for THz QCLs; 7.2. Metasurface collimator for THz QCLs; 7.3. Reduction of the lateral beam divergence; 7.4. Metasurface lens; 8. Conclusions and Future Perspectives; Acknowledgment; References.
  • 6. Plasmonics for Ultrasensitive Nanospectroscopy and Optofluidic-Plasmonics Biosensors1. Introduction; 1.1. Plasmonic nano-biosensors; 2. Mid-Infrared Plasmonics for Ultrasensitive Nanospectroscopy; 2.1. Radiative engineering with collective plasmons on antenna arrays; 2.2. Collectively enhanced infrared absorption spectroscopy; 3. High Throughput Fabrication of Plasmonics with Nanostencil Lithography; 3.1. Nanostencil lithography technique; 3.2. High quality plasmonic resonances with NSL; 3.3. High throughput nanofabrication with NSL.