|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn784949340 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
120409s2012 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d YDXCP
|d OCLCQ
|d CUX
|d OCLCQ
|d STBDS
|d OTZ
|d AGLDB
|d D6H
|d OCLCF
|d OCLCQ
|d VTS
|d TKN
|d STF
|d NZHMA
|d OCLCQ
|d AJS
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d QGK
|d OCLCO
|
019 |
|
|
|a 785782777
|a 1087333507
|a 1259235082
|
020 |
|
|
|a 9780191624179
|q (electronic bk.)
|
020 |
|
|
|a 0191624179
|q (electronic bk.)
|
020 |
|
|
|z 9780199601165
|
020 |
|
|
|z 019960116X
|
020 |
|
|
|a 0191810118
|
020 |
|
|
|a 9780191810114
|
020 |
|
|
|a 1280594586
|
020 |
|
|
|a 9781280594588
|
020 |
|
|
|a 9786613624413
|
020 |
|
|
|a 6613624411
|
029 |
1 |
|
|a AU@
|b 000062369916
|
029 |
1 |
|
|a DEBSZ
|b 493102078
|
035 |
|
|
|a (OCoLC)784949340
|z (OCoLC)785782777
|z (OCoLC)1087333507
|z (OCoLC)1259235082
|
050 |
|
4 |
|a QH390
|b .C63 2012eb
|
072 |
|
7 |
|a SCI
|x 029000
|2 bisacsh
|
082 |
0 |
4 |
|a 572.86
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Codon evolution :
|b mechanisms and models /
|c edited by Gina M. Cannarozzi, Adrian Schneider.
|
260 |
|
|
|a Oxford ;
|a New York :
|b Oxford University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (xv, 280 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
8 |
|
|a An authoritative and up-to-date review of evolution at the codon level, this book investigates the mechanisms and particularities of coding regions using the latest statistical analyses and codon-based models of evolution.
|
505 |
0 |
|
|a Cover; Contents; Foreword; Preface; List of Contributors; Part I: Modelling codon evolution; 1: Background; 1.1 Models of molecular evolution; 1.2 Markov models; 1.3 Maximum-likelihood estimation; 1.4 Performance assessment; 2: Parametric models of codon evolution; 2.1 Basic Markov models of codon substitution; 2.2 Evaluating selective pressure at the protein level; 2.3 Measuring selection on physico-chemical properties of amino acids; 2.4 Modelling site-dependence in coding sequences; 2.5 Further development of parametric models; 3: Empirical and semi-empirical models of codon evolution
|
505 |
8 |
|
|a 3.1 Introduction3.2 Empirical model by Schneider et al. (2005); 3.3 Combined model by Doron-Faigenboim and Pupko (2007); 3.4 Model by Kosiol et al. (2007); 3.5 Codon test; 3.6 Empirical search for the most important parameters; 3.7 Summary; 4: Monte Carlo computational approaches in Bayesian codon-substitution modelling; 4.1 Introduction; 4.2 The Bayesian framework; 4.3 Site-independent models of codon substitution; 4.4 Site-interdependent models of codon substitution; 4.5 Other recent modelling innovations and overall rankings; 4.6 Future directions
|
505 |
8 |
|
|a 5: Likelihood-based clustering (LiBaC) for codon models5.1 Introduction; 5.2 Theory for likelihood-based clustering (LiBaC); 5.3 Detecting positive selection in a large-scale analysis of real gene sequences; 5.4 Objective comparison of model-based classifications; 5.5 Simulation studies of model-based classification; 5.6 Recommendations for using LiBaC; 6: Detecting and understanding natural selection; 6.1 Selective mechanisms operating on gene sequences; 6.2 Brief overview of statistical methodologies for detecting positive selection
|
505 |
8 |
|
|a 6.3 The utility and the interpretation of the d[sub(N)]/d[sub(S)] measure6.4 Accounting for indels and overlapping ORFs; 6.5 Model-based approaches and common misconceptions; 6.6 Selection and adaptive traits; 6.7 Lessons from genomic studies and implications for studies of genetic disease; 7: Codon models as a vehicle for reconciling population genetics with inter-specific sequence data; 7.1 Introduction; 7.2 The importance of phenotype; 7.3 The Halpern-Bruno approach; 7.4 Limitations of the Halpern-Bruno approach; 7.5 Future directions
|
505 |
8 |
|
|a 8: Robust estimation of natural selection using parametric codon models8.1 Introduction; 8.2 Context-dependent substitution models; 8.3 Evaluating properties of dinucleotide models; 8.4 Evaluating properties of codon models; 8.5 Impact of model definitions on statistical power; 8.6 Conclusion; 9: Simulation of coding sequence evolution; 9.1 Introduction; 9.2 Simulation of coding sequences; 9.3 Uses of simulated coding data; 9.4 Software implementations; 10: Use of codon models in molecular dating and functional analysis; 10.1 Introduction
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Evolutionary genetics
|x Mathematical models.
|
650 |
|
0 |
|a Evolutionary genetics
|x Computer simulation.
|
650 |
|
0 |
|a Molecular evolution
|x Mathematical models.
|
650 |
|
0 |
|a Molecular evolution
|x Computer simulation.
|
650 |
|
6 |
|a Génétique évolutive
|x Modèles mathématiques.
|
650 |
|
6 |
|a Génétique évolutive
|x Simulation par ordinateur.
|
650 |
|
6 |
|a Évolution moléculaire
|x Modèles mathématiques.
|
650 |
|
6 |
|a Évolution moléculaire
|x Simulation par ordinateur.
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Genetics & Genomics.
|2 bisacsh
|
650 |
|
7 |
|a Evolutionary genetics
|x Mathematical models
|2 fast
|
700 |
1 |
|
|a Cannarozzi, Gina M.
|
700 |
1 |
|
|a Schneider, Adrian.
|
776 |
0 |
8 |
|i Print version:
|t Codon evolution.
|d Oxford ; New York : Oxford University Press, 2012
|z 9780199601165
|w (OCoLC)757930854
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=437290
|z Texto completo
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10534077
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 437290
|
938 |
|
|
|a Oxford University Press USA
|b OUPR
|n EDZ0001131717
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7464951
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12403357
|
994 |
|
|
|a 92
|b IZTAP
|