Cargando…

Limits, Limits Everywhere : the Tools of Mathematical Analysis /

A quantity can be made smaller and smaller without it ever vanishing. This fact has profound consequences for science, technology, and even the way we think about numbers. In this book, we will explore this idea by moving at an easy pace through an account of elementary real analysis and, in particu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Applebaum, David, 1956-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : OUP Oxford, 2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn784886666
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 120409s2012 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d IGB  |d AGLDB  |d U3W  |d D6H  |d CN8ML  |d OCLCQ  |d VTS  |d S9I  |d TKN  |d STF  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d AJS  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO 
019 |a 817083215 
020 |a 9780191627866  |q (electronic bk.) 
020 |a 0191627860  |q (electronic bk.) 
020 |a 1280595191 
020 |a 9781280595196 
029 1 |a AU@  |b 000055806171 
029 1 |a DEBSZ  |b 37932704X 
029 1 |a DEBSZ  |b 445111038 
029 1 |a NZ1  |b 14534083 
035 |a (OCoLC)784886666  |z (OCoLC)817083215 
050 4 |a QA300  |b .A67 2012eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 22 
049 |a UAMI 
100 1 |a Applebaum, David,  |d 1956- 
245 1 0 |a Limits, Limits Everywhere :  |b the Tools of Mathematical Analysis /  |c David Applebaum. 
260 |a Oxford :  |b OUP Oxford,  |c 2012. 
300 |a 1 online resource (217 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
505 0 |a Cover; Contents; PART I: APPROACHING LIMITS; 1. A Whole Lot of Numbers; 1.1 Natural Numbers; 1.2 Prime Numbers; 1.3 The Integers; 1.4 Exercises for Chapter 1; 2. Let's Get Real; 2.1 The Rational Numbers; 2.2 Irrational Numbers; 2.3 The Real Numbers; 2.4 A First Look at Infinity; 2.5 Exercises for Chapter 2; 3. The Joy of Inequality; 3.1 Greater or Less?; 3.2 Intervals; 3.3 The Modulus of a Number; 3.4 Maxima and Minima; 3.5 The Theorem of the Means; 3.6 Getting Closer; 3.7 Exercises for Chapter 3; 4. Where Do You Go To, My Lovely?; 4.1 Limits; 4.2 Bounded Sequences; 4.3 The Algebra of Limits. 
505 8 |a 4.4 Fibonacci Numbers and the Golden Section4.5 Exercises for Chapter 4; 5. Bounds for Glory; 5.1 Bounded Sequences Revisited; 5.2 Monotone Sequences; 5.3 An Old Friend Returns; 5.4 Finding Square Roots; 5.5 Exercises for Chapter 5; 6. You Cannot be Series; 6.1 What are Series?; 6.2 The Sigma Notation; 6.3 Convergence of Series; 6.4 Nonnegative Series; 6.5 The Comparison Test; 6.6 Geometric Series; 6.7 The Ratio Test; 6.8 General Infinite Series; 6.9 Conditional Convergence; 6.10 Regrouping and Rearrangements; 6.11 Real Numbers and Decimal Expansions; 6.12 Exercises for Chapter 6. 
505 8 |a PART II: EXPLORING LIMITS7. Wonderful Numbers -- e, p and?; 7.1 The Number e; 7.2 The Number p; 7.3 The Number?; 8. Infinite Products; 8.1 Convergence of Infinite Products; 8.2 Infinite Products and Prime Numbers; 8.3 Diversion -- Complex Numbers and the Riemann Hypothesis; 9. Continued Fractions; 9.1 Euclid's Algorithm; 9.2 Rational and Irrational Numbers as Continued Fractions; 10. How Infinite Can You Get?; 11. Constructing the Real Numbers; 11.1 Dedekind Cuts; 11.2 Cauchy Sequences; 11.3 Completeness; 12. Where to Next in Analysis? The Calculus; 12.1 Functions; 12.2 Limits and Continuity. 
505 8 |a 12.3 Differentiation12.4 Integration; 13. Some Brief Remarks About the History of Analysis; Further Reading; Appendices; Appendix 1: The Binomial Theorem; Appendix 2: The Language of Set Theory; Appendix 3: Proof by Mathematical Induction; Appendix 4: The Algebra of Numbers; Hints and Solutions to Selected Exercise; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W; Z. 
520 |a A quantity can be made smaller and smaller without it ever vanishing. This fact has profound consequences for science, technology, and even the way we think about numbers. In this book, we will explore this idea by moving at an easy pace through an account of elementary real analysis and, in particular, will focus on numbers, sequences, and series. Almost all textbooks on introductory analysis assume some background in calculus. This book doesn't and, instead, the emphasis is on the application of analysis to number theory. The book is split into two parts. Part 1 follows a standard university. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical analysis  |v Textbooks. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast 
655 7 |a Textbooks  |2 fast 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=442898  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24244218 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL886505 
938 |a EBSCOhost  |b EBSC  |n 442898 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 362502 
938 |a YBP Library Services  |b YANK  |n 7584632 
994 |a 92  |b IZTAP