Cargando…

Bonds and Bands in Semiconductors.

This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Phillips, Jim
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Momentum Press, 2010.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Crystal structures
  • Energy bands
  • Metals, insulators, and semiconductors
  • Allowed and forbidden energies
  • Valence bonds
  • Bond counting
  • Atomic orbitals
  • Hybridized orbitals
  • Bonding definitions and rules
  • Bond energy gaps and band energy gaps
  • Tetrahedral coordination
  • Layer structures
  • Fluorite bonds
  • Relativistic structures
  • Chalcogenides
  • Defect and excess compounds
  • Transition metal semiconductors
  • Bond lengths and radii
  • Rationalized radii
  • Impurity radii
  • Layer bonds
  • Summary
  • References.
  • 2. Covalent and ionic bonds
  • Electronic configurations of atoms
  • Core D electrons
  • Universal semiconductor model
  • Covalent and ionic character
  • Symmetric and antisymmetric potentials
  • Coulson definition of ionicity
  • Pauling definition of ionicity
  • Extension of Pauling's definition to crystals
  • Limitations of Pauling's definition
  • The middle way
  • Homopolar energy gaps
  • Complex energy gaps and resonance
  • Heteropolar energy gaps
  • Modern definition of ionicity
  • Statistical test of definitions of ionicity
  • Borderline crystals
  • True (undistorted) scales
  • Cohesive energies
  • Itinerant character of covalent binding
  • Core corrections
  • Electronegativity table
  • Historical note
  • Summary
  • References.
  • 3. Elastic and piezoelectric constants
  • Stresses and strains
  • Harmonic strain energy
  • Invariance conditions
  • Model force fields
  • Diamond lattice
  • Zincblende lattice
  • Hear constants and ionicity
  • Internal strains
  • Piezoelectric constants
  • Origin of piezoelectric effects
  • Wurtzite crystals
  • Chalcopyrite crystals
  • Summary
  • References.
  • 4. Lattice vibrations
  • Brillouin zones
  • Experimental determination of w(K)
  • Normal modes
  • Mode descriptions
  • Sum rules
  • Optically active modes
  • Infrared modes and effective charges
  • Raman active modes
  • Polaritons
  • Dispersion curves of diamond-type semiconductors
  • Electrostatic models
  • Zincblende-type dispersion curves
  • Metallization in gray Sn
  • Thermal expansion
  • Vibrations of impurity atoms
  • Summary
  • References.
  • 5. Energy bands
  • The language of band theory
  • Nearly free electron model
  • Valence bands of silicon
  • Jones zone
  • Simplified bands
  • Isotropic model
  • Secular equation
  • Dielectric function of isotropic model
  • Important anisotropies
  • Conduction bands
  • Band-edge curvatures
  • Perturbation theory
  • Special cases
  • Atomic orbitals
  • Specific band structures
  • Diamond and silicon
  • Germanium and gallium arsenide
  • Indium antimonide and arsenide
  • Gray tin and the mercury chalcogenides
  • Effective mass parameters
  • The PbS family
  • Summary
  • References.
  • 6. Pseudopotentials and charge densities
  • Atomic wave functions
  • Atomic pseudopotentials
  • Crystal potential
  • Crystal wave functions
  • Pseudoatom form factors
  • Metallic binding
  • Covalent binding
  • Ionic binding
  • Semiconductor wave functions
  • Pseudocharge densities
  • Atomic charges
  • Bond charges
  • Partially ionic charge distributions
  • Conduction band states
  • Pressure dependence of band edges
  • Temperature dependence of energy gaps
  • Summary
  • References.
  • 7. Fundamental optical spectra
  • One-electron excitations
  • Line and continuum (band) spectra
  • Dielectric function
  • Sum rules
  • Direct thresholds
  • Germanium
  • Photoemission
  • Derivative techniques
  • Interband energies
  • Core D electrons
  • Spectroscopic definitions of valence
  • Chemical trends in interband energies
  • Spin-orbit splittings
  • Crystal field splittings
  • Nonlinear susceptibilities
  • Summary
  • References.
  • 8. Thermochemistry of semiconductors
  • Cohesive energies
  • Pauling's description
  • Ionicity and metallization
  • Heats of formation
  • Entropies of fusion
  • The PbS or An B10-n family
  • Pressure-induced phase transitions
  • Ideal solutions
  • Regular solutions
  • Pseudobinary alloys
  • Bowing parameters
  • Crystallization of pseudobinary alloys
  • Virtual crystal model
  • Optical transitions in elemental alloys
  • Energy gaps in pseudobinary alloys
  • Summary
  • References.
  • 9. Impurities
  • Crystal growth and perfection
  • Stoichiometry of compound semiconductors
  • Shallow and deep impurity states
  • Diffusion of interstitial and substitutional impurities
  • Distribution coefficients
  • Donors and acceptors
  • Isovalent impurities
  • Spherical (hydrogenic) models
  • Band-edge degeneracies
  • Valley anisotropies
  • Chemical shifts and central cell corrections
  • Impurity states in compound semiconductors
  • Free and bound excitons
  • Donor-acceptor and isovalent pairs
  • Self-compensation
  • Polyvalent impurities
  • Transition metal impurities
  • Summary
  • References.
  • 10. Barriers, junctions, and devices
  • Fermi levels
  • Band bending
  • Metal-semiconductor contacts
  • P-n junctions
  • Carrier injection and trapping
  • Junction transistors
  • Tunnel diodes
  • Avalanche diodes
  • Why Si
  • Microwave evolution
  • Luminescence
  • Junction lasers
  • Intervalley transfer oscillators
  • Semiconductors and materials science
  • References.
  • 11. Crystalline semiconductor interfaces
  • Misfit dislocations
  • Quantum wells and MQW
  • MQW internet lasers
  • The race to the internet laser
  • Quality control in manufacturing internet lasers
  • Pulsed internet lasers
  • Rainbow light-emitting (laser) diodes
  • References.
  • 12. Amorphous semiconductors
  • Intermediate phases and the reversibility window
  • Broader aspects of intermediate phases
  • Amorphous Si solar cells
  • Thin film transistors
  • Larger scale stress relief
  • References.
  • 13. Crystalline/amorphous interfaces
  • Silica and window glass
  • Nature's miraculous interface
  • High-K dielectrics.