|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn780443402 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
100816s2011 nyua ob 001 0 eng |
010 |
|
|
|a 2020676885
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d YDXCP
|d E7B
|d OCLCF
|d EBLCP
|d DEBSZ
|d AZK
|d AGLDB
|d VTS
|d STF
|d AU@
|d K6U
|d N$T
|d OCLCO
|d VLY
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 923653610
|a 961544754
|a 1162000273
|
020 |
|
|
|a 9781617616976
|q ebook
|
020 |
|
|
|a 1617616974
|
020 |
|
|
|z 9781617615535
|q hardcover
|
020 |
|
|
|z 1617615536
|
029 |
1 |
|
|a DEBSZ
|b 472597086
|
029 |
1 |
|
|a AU@
|b 000051574614
|
035 |
|
|
|a (OCoLC)780443402
|z (OCoLC)923653610
|z (OCoLC)961544754
|z (OCoLC)1162000273
|
050 |
0 |
0 |
|a QA76.87
|
072 |
|
7 |
|a COM
|x 044000
|2 bisacsh
|
082 |
0 |
0 |
|a 006.3/2
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Artificial neural networks /
|c editor, Seoyun J. Kwon.
|
264 |
|
1 |
|a Hauppauge, N.Y. :
|b Nova Science Publishers,
|c c2011.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics research developments
|
490 |
1 |
|
|a Engineering tools, techniques and tables
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record.
|
505 |
0 |
|
|a ARTIFICIAL NEURAL NETWORKS -- ARTIFICIAL NEURAL NETWORKS -- CONTENTS -- PREFACE -- ARTIFICIAL NEURAL NETWORK MODELING OF WATER AND WASTEWATER TREATMENT PROCESSES -- ABSTRACT -- 1. INTRODUCTION -- 2. TOPOLOGY OF ARTIFICIAL NEURAL NETWORKS -- 2.1. Transfer Functions -- 2.2. Learning Process -- 2.2.1. Supervised Learning -- 2.2.2. Reinforcement Learning -- 2.2.3. Unsupervised Learning -- 2.3. Training Algorithms -- 2.3.1. Back Propagation Algorithm -- 2.3.1.1. Conjugate Gradient Algorithm -- 2.3.1.2. Scaled Conjugate Gradient Algorithm
|
505 |
8 |
|
|a 2.3.2. Quasi-Newton Algorithms 2.3.3. Levenberg-Marquardt Algorithm -- 3. TRAINING, VALIDATION AND TEST OF A NEURAL NETWORK -- 3.1. Test of the Fitted Model -- 3.2. Relative Importance of Input Variables -- 3.3. Improving Generalization -- 3.3.1. Regularization -- 3.3.2. Early Stopping -- 4. APPLICATIONS OF ARTIFICIAL NEURAL NETWORK MODELING -- 5. ANN MODELING OF ADSORPTION PROCESSES -- 6. ANN MODELING OF BIOLOGICAL TREATMENT PROCESSES -- 7. ANN MODELING OF ELECTROCHEMICAL TREATMENT PROCESSES -- 8. ANN MODELING OF PHOTOCATALYTIC PROCESSES
|
505 |
8 |
|
|a 9. ANN MODELING OF PHOTOOXIDATIVE PROCESSES 9.1. Fenton and Photo�Fenton Processes -- 9.2. UV/H2O2, ozonation and chlorination processes -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- RECENT ADVANCES AND CHALLENGES IN THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS (ANN) IN NEUROLOGICAL SCIENCES: AN OVERVIEW -- SUMMARY -- 1. INTRODUCTION -- 2. CLASSIFICATION SYSTEMS AND MEASURES IN MEDICINE AND NEUROLOGY -- 3. HISTORY AND BASIC DESCRIPTION OF ANN -- 4. DEVELOPMENTS AND CURRENT UTILIZATION OF ANN IN NEUROLOGY
|
505 |
8 |
|
|a 4.1. ANN in Cerebrovascular Diseases 4.2. Sleep Apnea -- 4.3. ANN in Neurodegenerative Disorders -- 4.3.1. Alzheimer�s Disease And Other Dementias -- 4.3.2. Parkinson�s Disease -- 4.4. ANN in Clinical Neurophysiology (EEG and EMG) -- 4.5. ANN in Autism Research -- 4.6. ANN in Brain Tumor Studies -- 4.7. ANN in Brain Injuries -- 5. FUTURE CHALLENGES OF ANN: APPLICATIONS IN NEUROLOGICAL SCIENCES -- 6. CONCLUSIONS -- APPENDIX 1. (ONLINE ONLY) -- APPENDIX 2. (ONLINE ONLY) -- APPENDIX 3. (ONLINE ONLY) -- REFERENCES
|
505 |
8 |
|
|a DIFFERENT TYPES OF APPLICATIONS PERFORMED WITH DIFFERENT TYPES OF NEURAL NETWORKS ABSTRACT -- 1. THEORETICAL ASPECTS -- 2. NEURAL NETWORK TYPES -- 3. NEURAL NETWORK APPLICATIONS -- 3.1. Direct Neural Network Modeling -- 3.2. Inverse Neural Network Modeling -- 3.3. Neural Networks Used for the Chemical Process Monitoring -- 3.4. Optimization Based on Neural Network Models -- 3.5. Neural Networks Used in Process Control -- 3.6. Neural Networks as Classification Tools -- 3.7. Property Prediction and Molecular Design -- CONCLUSIONS -- REFERENCES
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Neural networks (Computer science)
|
650 |
|
2 |
|a Neural Networks, Computer
|
650 |
|
6 |
|a Réseaux neuronaux (Informatique)
|
650 |
|
7 |
|a COMPUTERS
|x Neural Networks.
|2 bisacsh
|
650 |
|
7 |
|a Neural networks (Computer science)
|2 fast
|
700 |
1 |
|
|a Kwon, Seoyun J.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Artificial neural networks
|d Hauppauge, N.Y. : Nova Science Publishers, c2011.
|z 9781617615535 (hardcover)
|w (DLC) 2010031737
|
830 |
|
0 |
|a Mathematics research developments series.
|
830 |
|
0 |
|a Engineering tools, techniques and tables.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=439593
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7574642
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 439593
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10654736
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3017765
|
994 |
|
|
|a 92
|b IZTAP
|