Lectures on Invariant Theory /
This 2003 book is a brief introduction to algebraic and geometric invariant theory with numerous examples and exercises.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2003.
|
Colección: | London Mathematical Society lecture note series ;
no. 296. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Title
- Copyright
- Dedication
- Preface
- Introduction
- 1 The symbolic method
- 1.1 First examples
- 1.2 Polarization and restitution
- 1.3 Bracket functions
- Bibliographical notes
- Exercises
- 2 The First Fundamental Theorem
- 2.1 The omega-operator
- 2.2 The proof
- 2.3 Grassmann varieties
- 2.4 The straightening algorithm
- Bibliographical notes
- Exercises
- 3 Reductive algebraic groups
- 3.1 The Gordan-Hilbert Theorem
- 3.2 The unitary trick
- 3.3 Affine algebraic groups
- 3.4 Nagata's Theorem
- Bibliographical notes
- Exercises.
- 4 Hilbert's Fourteenth Problem
- 4.1 The problem
- 4.2 The Weitzenb ock Theorem
- 4.3 Nagata's counterexample
- Bibliographical notes
- Exercises
- 5 Algebra of covariants
- 5.1 Examples of covariants
- 5.2 Covariants of an action
- 5.3 Linear representations of reductive groups
- 5.4 Dominant weights
- 5.5 The Cayley-Sylvester formula
- 5.6 Standard tableaux again
- Bibliographical notes
- Exercises
- 6 Quotients
- 6.1 Categorical and geometric quotients
- 6.2 Examples
- 6.3 Rational quotients
- Bibliographical notes
- Exercises
- 7 Linearization of actions.
- 7.1 Linearized line bundles
- 7.2 The existence of linearization
- 7.3 Linearization of an action
- Bibliographical notes
- Exercises
- 8 Stability
- 8.1 Stable points
- 8.2 The existence of a quotient
- 8.3 Examples
- Bibliographical notes
- Exercises
- 9 Numerical criterion of stability
- 9.1 The function æ(x, .)
- 9.2 The numerical criterion
- 9.3 The proof
- 9.4 The weight polytope
- 9.5 Kempf-stability
- Bibliographical notes
- Exercises
- 10 Projective hypersurfaces
- 10.1 Nonsingular hypersurfaces
- 10.2 Binary forms
- 10.3 Plane cubics
- 10.4 Cubic surfaces.
- Bibliographical notes
- Exercises
- 11 Configurations of linear subspaces
- 11.1 Stable configurations
- 11.2 Points in Pn
- 11.3 Lines in P3
- Bibliographical notes
- Exercises
- 12 Toric varieties
- 12.1 Actions of a torus on an affine space
- 12.2 Fans
- 12.3 Examples
- Bibliographical notes
- Exercises
- Bibliography
- Index of Notation
- Index.