|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn776980318 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
090914s2003 enk ob 001 0 eng d |
040 |
|
|
|a UkCbUP
|b eng
|e pn
|c AUD
|d OCLCO
|d OCLCQ
|d MHW
|d EBLCP
|d OCLCF
|d DEBSZ
|d OCLCQ
|d YDXCP
|d E7B
|d N$T
|d IDEBK
|d OCLCQ
|d AGLDB
|d OCLCQ
|d VTS
|d BNG
|d AU@
|d REC
|d STF
|d M8D
|d UKAHL
|d OCLCQ
|d AJS
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 726827463
|a 976521260
|
020 |
|
|
|a 9780511615436
|q (ebook)
|
020 |
|
|
|a 0511615434
|q (ebook)
|
020 |
|
|
|a 9780521525480
|q (paperback)
|
020 |
|
|
|a 0521525489
|q (paperback)
|
020 |
|
|
|a 9781107367173
|
020 |
|
|
|a 1107367174
|
020 |
|
|
|a 9781107362260
|q (electronic bk.)
|
020 |
|
|
|a 1107362261
|q (electronic bk.)
|
029 |
1 |
|
|a DEBBG
|b BV043059933
|
029 |
1 |
|
|a DEBSZ
|b 382457285
|
029 |
1 |
|
|a DEBSZ
|b 445577851
|
029 |
1 |
|
|a DEBSZ
|b 44649710X
|
035 |
|
|
|a (OCoLC)776980318
|z (OCoLC)726827463
|z (OCoLC)976521260
|
050 |
|
4 |
|a QA201 .D65 2002
|
072 |
|
7 |
|a MAT
|x 002050
|2 bisacsh
|
082 |
0 |
4 |
|a 512.5
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Dolgachev, I.
|q (Igor V.)
|
245 |
1 |
0 |
|a Lectures on Invariant Theory /
|c Igor Dolgachev.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2003.
|
300 |
|
|
|a 1 online resource (236 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series ;
|v no. 296
|
500 |
|
|
|a Title from publishers bibliographic system (viewed 22 Dec 2011).
|
520 |
|
|
|a This 2003 book is a brief introduction to algebraic and geometric invariant theory with numerous examples and exercises.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Cover -- Title -- Copyright -- Dedication -- Preface -- Introduction -- 1 The symbolic method -- 1.1 First examples -- 1.2 Polarization and restitution -- 1.3 Bracket functions -- Bibliographical notes -- Exercises -- 2 The First Fundamental Theorem -- 2.1 The omega-operator -- 2.2 The proof -- 2.3 Grassmann varieties -- 2.4 The straightening algorithm -- Bibliographical notes -- Exercises -- 3 Reductive algebraic groups -- 3.1 The Gordan-Hilbert Theorem -- 3.2 The unitary trick -- 3.3 Affine algebraic groups -- 3.4 Nagata's Theorem -- Bibliographical notes -- Exercises.
|
505 |
8 |
|
|a 4 Hilbert's Fourteenth Problem -- 4.1 The problem -- 4.2 The Weitzenb ock Theorem -- 4.3 Nagata's counterexample -- Bibliographical notes -- Exercises -- 5 Algebra of covariants -- 5.1 Examples of covariants -- 5.2 Covariants of an action -- 5.3 Linear representations of reductive groups -- 5.4 Dominant weights -- 5.5 The Cayley-Sylvester formula -- 5.6 Standard tableaux again -- Bibliographical notes -- Exercises -- 6 Quotients -- 6.1 Categorical and geometric quotients -- 6.2 Examples -- 6.3 Rational quotients -- Bibliographical notes -- Exercises -- 7 Linearization of actions.
|
505 |
8 |
|
|a 7.1 Linearized line bundles -- 7.2 The existence of linearization -- 7.3 Linearization of an action -- Bibliographical notes -- Exercises -- 8 Stability -- 8.1 Stable points -- 8.2 The existence of a quotient -- 8.3 Examples -- Bibliographical notes -- Exercises -- 9 Numerical criterion of stability -- 9.1 The function æ(x, .) -- 9.2 The numerical criterion -- 9.3 The proof -- 9.4 The weight polytope -- 9.5 Kempf-stability -- Bibliographical notes -- Exercises -- 10 Projective hypersurfaces -- 10.1 Nonsingular hypersurfaces -- 10.2 Binary forms -- 10.3 Plane cubics -- 10.4 Cubic surfaces.
|
505 |
8 |
|
|a Bibliographical notes -- Exercises -- 11 Configurations of linear subspaces -- 11.1 Stable configurations -- 11.2 Points in Pn -- 11.3 Lines in P3 -- Bibliographical notes -- Exercises -- 12 Toric varieties -- 12.1 Actions of a torus on an affine space -- 12.2 Fans -- 12.3 Examples -- Bibliographical notes -- Exercises -- Bibliography -- Index of Notation -- Index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Invariants.
|
650 |
|
0 |
|a Linear algebraic groups.
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
6 |
|a Invariants.
|
650 |
|
6 |
|a Groupes linéaires algébriques.
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Linear.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Algebraic.
|2 fast
|0 (OCoLC)fst00940902
|
650 |
|
7 |
|a Geometry, Differential.
|2 fast
|0 (OCoLC)fst00940919
|
650 |
|
7 |
|a Invariants.
|2 fast
|0 (OCoLC)fst00977982
|
650 |
|
7 |
|a Linear algebraic groups.
|2 fast
|0 (OCoLC)fst00999060
|
776 |
0 |
8 |
|i Print version:
|z 9780521525480
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v no. 296.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551344
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13427009
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26478479
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1182506
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10461595
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 551344
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25158818
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10689732
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10370373
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3279063
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10374348
|
994 |
|
|
|a 92
|b IZTAP
|