Ranks of Elliptic Curves and Random Matrix Theory /
This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2007.
|
Colección: | London Mathematical Society lecture note series ;
no. 341. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction J.B. Conrey, D.W. Farmer, F. Mezzadri and N.C. Snaith
- Part I. Families: Elliptic curves, rank in families and random matrices E. Kowalski
- Modeling families of L-functions D.W. Farmer
- Analytic number theory and ranks of elliptic curves M.P. Young
- The derivative of SO(2N +1) characteristic polynomials and rank 3 elliptic curves N.C. Snaith
- Function fields and random matrices D. Ulmer
- Some applications of symmetric functions theory in random matrix theory A. Gamburd
- Part II. Ranks of Quadratic Twists
- The distribution of ranks in families of quadratic twists of elliptic curves A. Silverberg
- Twists of elliptic curves of rank at least four K. Rubin and A. Silverberg
- The powers of logarithm for quadratic twists C. Delaunay and M. Watkins
- Note on the frequency of vanishing of L-functions of elliptic curves in a family of quadratic twists C. Delaunay
- Discretisation for odd quadratic twists J.B. Conrey, M.O. Rubinstein, N.C. Snaith and M. Watkins
- Secondary terms in the number of vanishings of quadratic twists of elliptic curve L-functions J.B. Conrey, A. Pokharel, M.O. Rubinstein and M. Watkins
- Fudge factors in the Birch and Swinnerton-Dyer Conjecture K. Rubin
- Part III. Number Fields and Higher Twists
- Rank distribution in a family of cubic twists M. Watkins
- Vanishing of L-functions of elliptic curves over number fields C. David, J. Fearnley and H. Kisilevsky
- Part IV. Shimura Correspondence, and Twists
- Computing central values of L-functions F. Rodriguez-Villegas
- Computation of central value of quadratic twists of modular L-functions Z. Mao, F. Rodriguez-Villegas and G. Tornaria
- Examples of Shimura correspondence for level p2 and real quadratic twists A. Pacetti and G. Tornaria
- Central values of quadratic twists for a modular form of weight H. Rosson and G. Tornaria
- Part V. Global Structure: Sha and Descent
- Heuristics on class groups and on Tate-Shafarevich groups C. Delaunay
- A note on the 2-part of X for the congruent number curves D.R. Heath-Brown
- 2-Descent tThrough the ages P. Swinnerton-Dyer.