|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBSCO_ocn776959118 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
100325s2007 enk ob 001 0 eng d |
040 |
|
|
|a UkCbUP
|b eng
|e pn
|c AUD
|d OCLCO
|d OCLCQ
|d OCLCO
|d MHW
|d EBLCP
|d DEBSZ
|d OCLCQ
|d OCLCF
|d COO
|d YDXCP
|d E7B
|d N$T
|d IDEBK
|d OCL
|d OCLCQ
|d UAB
|d OCLCQ
|d AU@
|d AGLDB
|d UKAHL
|d OL$
|d OCLCQ
|d S8J
|d OCLCQ
|d VLY
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 797856890
|a 1162232958
|a 1167559981
|a 1242486156
|
020 |
|
|
|a 9780511735158
|q (ebook)
|
020 |
|
|
|a 0511735154
|q (ebook)
|
020 |
|
|
|a 9780521699648
|q (paperback)
|
020 |
|
|
|a 0521699649
|q (paperback)
|
020 |
|
|
|a 9781107367876
|
020 |
|
|
|a 1107367875
|
020 |
|
|
|a 9781107362963
|q (electronic bk.)
|
020 |
|
|
|a 1107362962
|q (electronic bk.)
|
020 |
|
|
|a 1139882686
|
020 |
|
|
|a 9781139882682
|
020 |
|
|
|a 1107372410
|
020 |
|
|
|a 9781107372412
|
020 |
|
|
|a 1107368987
|
020 |
|
|
|a 9781107368989
|
020 |
|
|
|a 1299405479
|
020 |
|
|
|a 9781299405479
|
020 |
|
|
|a 1107365414
|
020 |
|
|
|a 9781107365414
|
029 |
1 |
|
|a DEBSZ
|b 381830497
|
035 |
|
|
|a (OCoLC)776959118
|z (OCoLC)797856890
|z (OCoLC)1162232958
|z (OCoLC)1167559981
|z (OCoLC)1242486156
|
050 |
|
4 |
|a QA567.2.E44 R36 2007
|
072 |
|
7 |
|a MAT
|x 012010
|2 bisacsh
|
082 |
0 |
4 |
|a 516.352
|2 22
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Ranks of Elliptic Curves and Random Matrix Theory /
|c edited by J.B. Conrey, D.W. Farmer, F. Mezzadri, N.C. Snaith.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2007.
|
300 |
|
|
|a 1 online resource (368 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a London Mathematical Society Lecture Note Series ;
|v no. 341
|
500 |
|
|
|a Title from publishers bibliographic system (viewed 22 Dec 2011).
|
520 |
|
|
|a This comprehensive volume introduces elliptic curves and the fundamentals of modeling by a family of random matrices.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Introduction J.B. Conrey, D.W. Farmer, F. Mezzadri and N.C. Snaith -- Part I. Families: Elliptic curves, rank in families and random matrices E. Kowalski -- Modeling families of L-functions D.W. Farmer -- Analytic number theory and ranks of elliptic curves M.P. Young -- The derivative of SO(2N +1) characteristic polynomials and rank 3 elliptic curves N.C. Snaith -- Function fields and random matrices D. Ulmer -- Some applications of symmetric functions theory in random matrix theory A. Gamburd -- Part II. Ranks of Quadratic Twists -- The distribution of ranks in families of quadratic twists of elliptic curves A. Silverberg -- Twists of elliptic curves of rank at least four K. Rubin and A. Silverberg -- The powers of logarithm for quadratic twists C. Delaunay and M. Watkins -- Note on the frequency of vanishing of L-functions of elliptic curves in a family of quadratic twists C. Delaunay -- Discretisation for odd quadratic twists J.B. Conrey, M.O. Rubinstein, N.C. Snaith and M. Watkins -- Secondary terms in the number of vanishings of quadratic twists of elliptic curve L-functions J.B. Conrey, A. Pokharel, M.O. Rubinstein and M. Watkins -- Fudge factors in the Birch and Swinnerton-Dyer Conjecture K. Rubin -- Part III. Number Fields and Higher Twists -- Rank distribution in a family of cubic twists M. Watkins -- Vanishing of L-functions of elliptic curves over number fields C. David, J. Fearnley and H. Kisilevsky -- Part IV. Shimura Correspondence, and Twists -- Computing central values of L-functions F. Rodriguez-Villegas -- Computation of central value of quadratic twists of modular L-functions Z. Mao, F. Rodriguez-Villegas and G. Tornaria -- Examples of Shimura correspondence for level p2 and real quadratic twists A. Pacetti and G. Tornaria -- Central values of quadratic twists for a modular form of weight H. Rosson and G. Tornaria -- Part V. Global Structure: Sha and Descent -- Heuristics on class groups and on Tate-Shafarevich groups C. Delaunay -- A note on the 2-part of X for the congruent number curves D.R. Heath-Brown -- 2-Descent tThrough the ages P. Swinnerton-Dyer.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Curves, Elliptic
|v Congresses.
|
650 |
|
0 |
|a Random matrices
|v Congresses.
|
650 |
|
6 |
|a Courbes elliptiques
|v Congrès.
|
650 |
|
6 |
|a Matrices aléatoires
|v Congrès.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x Algebraic.
|2 bisacsh
|
650 |
|
7 |
|a Curves, Elliptic.
|2 fast
|0 (OCoLC)fst00885455
|
650 |
|
7 |
|a Random matrices.
|2 fast
|0 (OCoLC)fst01089803
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 fast
|0 (OCoLC)fst01423772
|
700 |
1 |
|
|a Conrey, J. B.
|
700 |
1 |
|
|a Farmer, D. W.
|
700 |
1 |
|
|a Mezzadri, F.
|
700 |
1 |
|
|a Snaith, N. C.
|
776 |
0 |
8 |
|i Print version:
|z 9780521699648
|
830 |
|
0 |
|a London Mathematical Society lecture note series ;
|v no. 341.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552363
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13431049
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26385135
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL891266
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10561380
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 552363
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154638
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10370437
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 3583400
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10370321
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10666587
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10405712
|
994 |
|
|
|a 92
|b IZTAP
|