Cargando…

Lectures on the Ricci flow /

These notes represent an updated version of a course on Hamilton’s Ricci flow that I gave at the University of Warwick in the spring of 2004. I have aimed to give an introduction to the main ideas of the subject, a large proportion of which are due to Hamilton over the period since he introduced the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Topping, Peter, 1971-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2006.
Colección:London Mathematical Society lecture note series ; no. 325.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn776958754
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 100303s2006 enka ob 001 0 eng d
040 |a UkCbUP  |b eng  |e pn  |e rda  |c AUD  |d OCLCO  |d CUY  |d OCLCQ  |d OCLCO  |d MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d OCLCF  |d YDXCP  |d N$T  |d E7B  |d OCLCQ  |d UAB  |d OCLCQ  |d AU@  |d UKAHL  |d OL$  |d OCLCQ  |d LUN  |d OCLCQ  |d SFB  |d OCLCO  |d OCLCQ  |d TXI  |d OCLCO 
019 |a 726827061  |a 836869229  |a 1167499410  |a 1274010543  |a 1292402307  |a 1300657620  |a 1303389095  |a 1303484961 
020 |a 9780511721465  |q (ebook) 
020 |a 0511721463  |q (ebook) 
020 |a 9780521689472  |q (paperback) 
020 |a 0521689473  |q (paperback) 
020 |a 9781107367807 
020 |a 1107367808 
020 |a 9781107362895  |q (electronic bk.) 
020 |a 110736289X  |q (electronic bk.) 
020 |a 1139882627 
020 |a 9781139882620 
020 |a 1107372348 
020 |a 9781107372344 
020 |a 1107368510 
020 |a 9781107368514 
029 1 |a AU@  |b 000055792447 
029 1 |a DEBSZ  |b 382135547 
029 1 |a AU@  |b 000070531039 
035 |a (OCoLC)776958754  |z (OCoLC)726827061  |z (OCoLC)836869229  |z (OCoLC)1167499410  |z (OCoLC)1274010543  |z (OCoLC)1292402307  |z (OCoLC)1300657620  |z (OCoLC)1303389095  |z (OCoLC)1303484961 
050 4 |a QA670 .T66 2006 
072 7 |a MAT  |x 012030  |2 bisacsh 
082 0 4 |a 516.362 
084 |a 31.52  |2 bcl 
049 |a UAMI 
100 1 |a Topping, Peter,  |d 1971- 
245 1 0 |a Lectures on the Ricci flow /  |c Peter Topping. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2006. 
300 |a 1 online resource (x, 113 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society Lecture Note Series ;  |v no. 325 
500 |a Title from publishers bibliographic system (viewed 22 Dec 2011). 
504 |a Includes bibliographical references (pages 109-111), and index. 
505 0 |a Introduction ; 1.1 Ricci flow: what is it, and from where did it come? -- 1.2 Examples and special solutions ; 1.2.1 Einstein manifolds -- 1.2.2 Ricci solitons -- 1.2.3 Parabolic rescaling of Ricci flows -- 1.3 Getting a feel for Ricci flow; 1.3.1 Two dimensions -- 1.3.2 Three dimensions -- 1.4 The topology and geometry of manifolds in low dimensions -- 1.5 Using Ricci flow to prove topological and geometric results -- 
505 0 |a Riemannian geometry background ; 2.1 Notation and conventions -- 2.2 Einstein metrics --; 2.3 Deformation of geometric quantities as the Riemannian metric is deformed ; 2.3.1 The formulae -- 2.3.2 The calculations -- 2.4 Laplacian of the curvature tensor -- 2.5 Evolution of curvature and geometric quantities under Ricci flow -- 3 The maximum principle ; 3.1 Statement of the maximum principle -- 3.2 Basic control on the evolution of curvature -- 3.3 Global curvature derivative estimates -- 4 Comments on existence theory for parabolic PDE ; 4.1 Linear scalar PDE -- 4.2 The principal symbol -- 4.3 Generalisation to vector bundles -- 4.4 Properties of parabolic equations -- 
505 0 |a 5 Existence theory for the Ricci flow ; 5.1 Ricci flow is not parabolic -- 5.2 Short-time existence and uniqueness : the DeTurck trick -- 5.3 Curvature blow-up at finite-time singularities -- 6 Ricci flow as a gradient flow ; 6.1 Gradient of total scalar curvature and related functionals -- 6.2 The [script capital] F-functional -- 6.3 The heat operator and its conjugate -- 6.4 A gradient flow formulation -- 6.5 The classical entropy -- 6.6 The zeroth eigenvalue of -4[capital Greek]Delta + [italic capital]R -- 
505 0 |a 7 Compactness of Riemannian manifolds and flows ; 7.1 Convergence and compactness of manifolds -- 7.2 Convergence and compactness of flows -- 7.3 Blowing up at singularities I -- 8 Perelman's [script capital]W entropy functional ; 8.1 Definition, motivation and basic properties -- 8.2 Monotonicity of [script capital]W -- 8.3 No local volume collapse where curvature is controlled -- 8.4 Volume ratio bounds imply injectivity radius bounds -- 8.5 Blowing up at singularities II -- 
505 0 |a 9 Curvature pinching and preserved curvature properties under Ricci flow ; 9.1 Overview -- 9.2 The Einstein Tensor, [italic capital]E -- 9.3 Evolution of [italic capital]E under the Ricci flow -- 9.4 The Uhlenbeck trick -- 9.5 Formulae for parallel functions on vector bundles -- 9.6 An ODE-PDE theorem -- 9.7 Applications of the ODE-PDE theorem -- Appendix A. Connected sum. 
520 |a These notes represent an updated version of a course on Hamilton’s Ricci flow that I gave at the University of Warwick in the spring of 2004. I have aimed to give an introduction to the main ideas of the subject, a large proportion of which are due to Hamilton over the period since he introduced the Ricci flow in 1982. The main difference between these notes and others which are available at the time of writing is that I follow the quite different route which is natural in the light of work of Perelman from 2002. It is now understood how to ‘blow up’ general Ricci flows near their singularities, as one is used to doing in other contexts within geometric analysis. This technique is now central to the subject and is emphasized throughout. The original lectures were delivered to a mixture of graduate students, postdocs, staff, and even some undergraduates. Generally I assumed that the audience had just completed a first course in differential geometry, and an elementary course in PDE, and were just about to embark on a more advanced course in PDE. I tried to make the lectures accessible to the general mathematician motivated by the applications of the theory to the Poincaré conjecture, and Thurston’s geometrisation conjecture. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Ricci flow. 
650 0 |a Geometry, Riemannian. 
650 0 |a Mathematics. 
650 6 |a Flot de Ricci. 
650 6 |a Géométrie de Riemann. 
650 6 |a Mathématiques. 
650 7 |a MATHEMATICS  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Ricci flow  |2 fast 
655 7 |a Instructional and educational works.  |2 lcgft 
655 7 |a Matériel d'éducation et de formation.  |2 rvmgf 
776 0 8 |i Print version:  |z 9780521689472 
830 0 |a London Mathematical Society lecture note series ;  |v no. 325. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552358  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH13430706 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385129 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1182562 
938 |a ebrary  |b EBRY  |n ebr10461218 
938 |a EBSCOhost  |b EBSC  |n 552358 
938 |a YBP Library Services  |b YANK  |n 10689784 
938 |a YBP Library Services  |b YANK  |n 3583260 
938 |a YBP Library Services  |b YANK  |n 10370274 
938 |a YBP Library Services  |b YANK  |n 10405705 
994 |a 92  |b IZTAP