Number Theory and Polynomials /
Contributions by leading experts in the field provide a snapshot of current progress in polynomials and number theory.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2008.
|
Colección: | Cambridge books online.
London Mathematical Society lecture note series ; no. 352. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- The trace problem for totally positive algebraic integers / Julian Aguirre and Juan Carlos Peral ; Appendix / Jean-Pierre Serre
- Mahler's measure: from Number theory to geometry / Marie Jose Bertin
- Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps / Frits Beukers and Hans Montanus
- The merit factor problem / Peter Borwein, Ron Ferguson and Joshua Knauer
- Barker sequences and flat polynomials / Peter Borwein and Michael Mossinghoff
- The Hansen-Mullen primitivity conjecture: completion of proof / Stephen Cohen and Mateja Presern
- An inequality for the multiplicity of the roots of a polynomial / Arturas Dubickas
- Newman's inequality for in creasing exponential sums / Tamas Erdelyi
- On primitive divisors of n2 + b / Graham Everest and Glyn Harman.
- Irreducibility and greatest common divisor algorithms for sparse polynomials / Michael Filaseta, Andrew Granville and Andrzej Schinzel
- Consequences of the continuity of the monic integer transfinite diameter / Jan Hilmar
- Nonlinear recurrence sequences and Laurent polynomials / Andrew Hone
- Conjugate algebraic numbers on conics : a survey / James McKee
- On polynomial ergodic averages and square functions / Radhakrishnan Nair
- Polynomial inequalities, Mahler's measure, and multipliers / Igor E. Pritsket
- Integer transfinite diameter and computation of polynomials / Georges Rhin and Qiang Wu
- Smooth divisors of polynomials / Eira Scourfield
- Self-inversive polynomials with all zeros on the unit circle / Christopher Sinclair and Jeffrey Vaaler
- The Mahler measure of algebraic numbers: a survey / Chris Smyth.