Cargando…

Fuzzy decision making in modeling and control /

Decision making and control are two fields with distinct methods for solving problems, and yet they are closely related. This book bridges the gap between decision making and control in the field of fuzzy decisions and fuzzy control, and discusses various ways in which fuzzy decision making methods...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sousa, João M. C.
Otros Autores: Kaymak, Uzay
Formato: Electrónico eBook
Idioma:Inglés
Publicado: River Edge, N.J. : World Scientific, 2002.
Colección:World Scientific series in robotics and intelligent systems ; vol. 27.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBSCO_ocn776818101
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 030225s2002 njua ob 001 0 eng d
040 |a STF  |b eng  |e pn  |c STF  |d N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d STF  |d AU@  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9789812777911  |q (electronic bk.) 
020 |a 9812777911  |q (electronic bk.) 
020 |z 9812777911 
029 1 |a DEBBG  |b BV043095333 
029 1 |a DEBSZ  |b 421301724 
029 1 |a GBVCP  |b 803895046 
035 |a (OCoLC)776818101 
050 4 |a QA279.6  |b .S68 2002 
072 7 |a COM  |x 017000  |2 bisacsh 
082 0 4 |a 003.5  |2 22 
084 |a 85.03  |2 bcl 
084 |a 30.10  |2 bcl 
049 |a UAMI 
100 1 |a Sousa, João M. C. 
245 1 0 |a Fuzzy decision making in modeling and control /  |c João M.C. Sousa, Uzay Kaymak. 
260 |a River Edge, N.J. :  |b World Scientific,  |c 2002. 
300 |a 1 online resource (xix, 335 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific series in robotics and intelligent systems ;  |v vol. 27 
504 |a Includes bibliographical references (pages 319-330) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction. 1.1. Control systems. 1.2. Advanced control systems. 1.3. Fuzzy control and decision making. 1.4. Chapter outline -- 2. Fuzzy decision making. 2.1. Classification of decision making methods. 2.2. General formulation of decision making. 2.3. Fuzzy decisions. 2.4. Fuzzy multi attribute decision making. 2.5. Summary and concluding remarks -- 3. Fuzzy decision functions. 3.1. Main types of aggregation. 3.2. Triangular norms and conorms. 3.3. Averaging and compensatory operators. 3.4. Generalized operators. 3.5. Weighted aggregation. 3.6. Summary and concluding remarks -- 4. Fuzzy aggregated membership control. 4.1. Decision making and control. 4.2. Conventional fuzzy controllers. 4.3. Nonlinear controllers using decision functions. 4.4. Examples of fuzzy aggregated membership control. 4.5. Summary and concluding remarks -- 5. Modeling and identification. 5.1. Formulation of the modeling problem. 5.2. Fuzzy modeling. 5.3. Fuzzy identification. 5.4. Identification by product-space fuzzy clustering. 5.5. Summary and concluding remarks -- 6. Fuzzy decision making for modeling. 6.1. Fuzzy decisions in fuzzy modeling. 6.2. Defuzzification as a fuzzy decision. 6.3. Application example: fuzzy security assessment. 6.4. Summary and concluding remarks -- 7. Fuzzy model- based control. 7.1. Inversion of fuzzy models. 7.2. Inversion of a singleton fuzzy model. 7.3. Inversion of an affine Takagi-Sugeno fuzzy model. 7.4. On-line adaptation of feed forward fuzzy models. 7.5. Predictive control using the inversion of a fuzzy model. 7.6. Pressure control of a fermentation tank. 7.7. Fuzzy compensation of steady-state errors. 7.8. Summary and concluding remarks -- 8. Performance criteria. 8.1. Design specifications. 8.2. Classical performance specifications. 8.3. Classical performance criteria. 8.4. Fuzzy performance criteria. 8.5. Summary and concluding remarks. 
505 8 |a 9. Model-based control with fuzzy decision functions. 9.1. Fuzzy decision making in predictive control. 9.2. Fuzzy model-based predictive control. 9.3. Fuzzy criteria for decision making in control. 9.4. Application examples. 9.5. Design of decision functions from expert knowledge. 9.6. Summary and concluding remarks -- 10. Derivative-free optimization. 10.1. Branch-and-bound optimization for predictive control. 10.2. Branch-and-bound optimization for fuzzy predictive control. 10.3. Application example for fuzzy branch-and-bound. 10.4. Genetic algorithms for optimization in predictive control. 10.5. Application example with genetic algorithms. 10.6. Summary and concluding remarks -- 11. Advanced optimization issues. 11.1. Convex optimization in fuzzy predictive control. 11.2. Application example with convex fuzzy optimization. 11.3. Fuzzy predictive filters. 11.4. Application example for fuzzy predictive filters. 11.5. Summary and concluding remarks -- 12. Application example. 12.1. Air-conditioning systems. 12.2. Fan-coil systems. 12.3. Fuzzy models of the air-conditioning system. 12.4. Controllers applied to the air-conditioning system. 12.5. Summary and concluding remarks -- 13. Future developments. 13.1. Theoretical analysis of FAME controllers. 13.2. Decision support for fuzzy modeling. 13.3. Cooperative control systems. 13.4. Control with approximate models. 13.5. Relation to robust control. 13.6. Hierarchical fuzzy goals in control applications. 13.7. B&B for MIMO systems. 
520 |a Decision making and control are two fields with distinct methods for solving problems, and yet they are closely related. This book bridges the gap between decision making and control in the field of fuzzy decisions and fuzzy control, and discusses various ways in which fuzzy decision making methods can be applied to systems modeling and control. Fuzzy decision making is a powerful paradigm for dealing with human expert knowledge when one is designing fuzzy model-based controllers. The combination of fuzzy decision making and fuzzy control in this book can lead to novel control schemes that improve the existing controllers in various ways. The following applications of fuzzy decision making methods for designing control systems are considered: Fuzzy decision making for enhancing fuzzy modeling. The values of important parameters in fuzzy modeling algorithms are selected by using fuzzy decision making; Fuzzy decision making for designing signal-based fuzzy controllers. The controller mappings and the defuzzification steps can be obtained by decision making methods; Fuzzy design and performance specifications in model-based control. Fuzzy constraints and fuzzy goals are used; Design of model-based controllers combined with fuzzy decision modules. Human operator experience is incorporated for the performance specification in model-based control.The advantages of bringing together fuzzy control and fuzzy decision making are shown with multiple examples from real and simulated control systems. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Fuzzy decision making. 
650 0 |a Decision making. 
650 0 |a Control theory. 
650 6 |a Prise de décision floue. 
650 6 |a Prise de décision. 
650 6 |a Théorie de la commande. 
650 7 |a decision making.  |2 aat 
650 7 |a COMPUTERS  |x Cybernetics.  |2 bisacsh 
650 7 |a Control theory  |2 fast 
650 7 |a Decision making  |2 fast 
650 7 |a Fuzzy decision making  |2 fast 
650 1 7 |a Besliskunde.  |2 gtt 
650 1 7 |a Fuzzy sets.  |2 gtt 
650 1 7 |a Controlesystemen.  |2 gtt 
700 1 |a Kaymak, Uzay. 
776 0 8 |i Print version:  |w (OCoLC)52644629 
830 0 |a World Scientific series in robotics and intelligent systems ;  |v vol. 27. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514256  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24684770 
938 |a ebrary  |b EBRY  |n ebr10714087 
938 |a EBSCOhost  |b EBSC  |n 514256 
938 |a YBP Library Services  |b YANK  |n 9966214 
994 |a 92  |b IZTAP