Cargando…

Principles of radiation interaction in matter and detection /

This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abun...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Leroy, Claude, 1947-
Otros Autores: Rancoita, Pier-Georgio
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2012.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction. 1.1. Radiation and particle interactions ; 1.2. Particles and types of interaction ; 1.3. Relativistic kinematics ; 1.4. Atomic mass, weight, standard weight and mass unit ; 1.5. Cross section and differential cross section ; 1.6. Coulomb single-scattering cross section ; 1.7. Detectors and large experimental apparata
  • 2. Electromagnetic interaction of radiation in matter. 2.1. Passage of ionizing particles through matter ; 2.2. Multiple and extended volume Coulomb interactions ; 2.3. Photon interaction and absorption in matter ; 2.4. Electromagnetic cascades in matter
  • 3. Nuclear interactions in matter. 3.1. General properties of the nucleus ; 3.2. Phenomenology of interactions on nuclei at high energy ; 3.3. Hadronic shower development and propagation in matter
  • 4. Radiation environments and damage in silicon semiconductors. 4.1. Radiation environments ; 4.2. Relevant processes of energy deposition and damage ; 4.3. Radiation induced defects and modification of silicon bulk and p
  • n junction properties
  • 5. Scintillating media and scintillator detectors. 5.1. Scintillators ; 5.2. The Cerenkov detectors ; 5.3. Wavelength shifters ; 5.4. Transition radiation detectors (TRD) ; 5.5. Scintillating fibers ; 5.6. Detection of the scintillation light ; 5.7. Applications in calorimetry ; 5.8. Application in time-of-flight (ToF) Technique
  • 6. Solid state detectors. 6.1. Basic principles of operation ; 6.2. Charge collection efficiency and Hecht equation ; 6.3. Spectroscopic characteristics of standard planar detectors ; 6.4. Microstrip detectors ; 6.5. Pixel detector devices ; 6.6. Photovoltaic and solar cells ; 6.7. Neutrons detection with silicon detectors ; 6.8. Radiation effects on silicon semiconductor detectors
  • 7. Displacement damage and particle interactions in silicon devices. 7.1. Displacement damage in irradiated bipolar transistors ; 7.2. Single event effects
  • 8. Gas filled chambers. 8.1. The ionization chamber ; 8.2. Recombination effects ; 8.3. Example of ionization chamber application: the [symbol]-cell ; 8.4. Proportional counters ; 8.5. Proportional counters: cylindrical coaxial wire chamber ; 8.6. Multiwire proportional chambers (MWPC) ; 8.7. The Geiger-Mueller counter
  • 9. Principles of particle energy determination. 9.1. Experimental physics and calorimetry ; 9.2. Electromagnetic sampling calorimetry ; 9.3. Principles of calorimetry with complex absorbers ; 9.4. Energy resolution in sampling electromagnetic calorimetry ; 9.5. Homogeneous calorimeters ; 9.6. Position measurement ; 9.7. Electron hadron separation ; 9.8. Hadronic calorimetry ; 9.9. Methods to achieve the compensation condition ; 9.10. Compensation and hadronic energy resolution ; 9.11. Calorimetry at very high energy
  • 10. Superheated droplet (bubble) detectors and CDM search. 10.1. The superheated droplet detectors and their operation ; 10.2. Search of cold dark matter (CDM) ; 10.3. Double beta decay
  • 11. Medical physics applications. 11.1. Single photon emission computed tomography (SPECT) ; 11.2. Positron emission tomography (PET) ; 11.3. Magnetic resonance imaging (MRI) ; 11.4. X-ray medical imaging with MediPix devices
  • Appendix A. General properties and constraints
  • Appendix B. Mathematics and statistics.