|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn775428911 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
111006s2012 enk o 001 0 eng d |
040 |
|
|
|a COO
|b eng
|e pn
|c COO
|d N$T
|d OCLCQ
|d OCLCF
|d CAMBR
|d YDXCP
|d OCLCQ
|d EBLCP
|d DEBSZ
|d OCLCQ
|d AGLDB
|d ZCU
|d MERUC
|d OCLCQ
|d VTS
|d ICG
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d AJS
|d RDF
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 903621762
|a 923220180
|a 929120257
|a 1011004131
|a 1087376006
|a 1264744334
|a 1297560179
|a 1297795038
|
020 |
|
|
|a 9780883859285
|q (electronic bk.)
|
020 |
|
|
|a 0883859289
|q (electronic bk.)
|
029 |
1 |
|
|a DEBBG
|b BV043073180
|
029 |
1 |
|
|a DEBBG
|b BV043624335
|
029 |
1 |
|
|a DEBBG
|b BV044103550
|
029 |
1 |
|
|a DEBSZ
|b 421420863
|
029 |
1 |
|
|a DEBSZ
|b 449725790
|
029 |
1 |
|
|a GBVCP
|b 803884079
|
035 |
|
|
|a (OCoLC)775428911
|z (OCoLC)903621762
|z (OCoLC)923220180
|z (OCoLC)929120257
|z (OCoLC)1011004131
|z (OCoLC)1087376006
|z (OCoLC)1264744334
|z (OCoLC)1297560179
|z (OCoLC)1297795038
|
050 |
|
4 |
|a QA22
|
072 |
|
7 |
|a MAT
|x 015000
|2 bisacsh
|
082 |
0 |
4 |
|a 510.901
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Aaboe, Asger.
|
245 |
1 |
0 |
|a Episodes from the Early History of Mathematics /
|c Asger Aaboe.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Anneli Lax New Mathematical Library ;
|v v. 13
|
500 |
|
|
|a Title from publishers bibliographic system (viewed on 30 Jan 2012).
|
505 |
0 |
|
|a Front Cover -- Episodes From the Early History of Mathematics -- Copyright Page -- Contents -- Introduction -- Chapter 1. Babylonian Mathematics -- 1.1 Sources -- 1.2 The Babylonian Number System. A Multiplication Table -- 1.3 The Babylonian Number System. A Table of Reciprocals -- 1.4 Positional Number Systems -- 1.5 Babylonian Arithmetic -- 1.6 Three Babylonian Mathematical Texts -- 1.7 Summary -- Chapter 2. Early Greek Mathematics and Euclid�s Construction of the Regular Pentagon -- 2.1 Sources -- 2.2 Greek Mathematics before Euclid
|
505 |
8 |
|
|a 2.3 Euclid�s Elements2.4 Euclid�s Construction of the Regular Pentagon -- Chapter 3. Three Samples of Archimedean Mathematics -- 3.1 Archimedes� Life -- 3.2 Archimedes� Works -- 3.3 Constructions of Regular Polygons -- 3.4 Archimedes� Trisection of an Angle -- 3.5 Archimedes� Construction of the Regular Heptagon -- 3.6 Volume and Surface of a Sphere According to The Method -- Chapter 4. Ptolemy�s Construction of a Trigonometric Table -- 4.1 Ptolemy and The Almaugest -- 4.2 Ptolemy�s Table of Chords and Its Uses
|
505 |
8 |
|
|a 4.3 Ptolemy�s Construction of the Table of ChordsAppendix: Ptolemy�s Epicyclic Models -- Solutions to Problems -- Bibliography -- Back Cover
|
520 |
|
|
|a Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle. Some of the topics may be familiar to the reader, while others will seem surprising or be new.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Mathematics
|x History.
|
650 |
|
6 |
|a Mathématiques
|x Histoire.
|
650 |
|
7 |
|a MATHEMATICS
|x History & Philosophy.
|2 bisacsh
|
650 |
|
7 |
|a Mathematics
|2 fast
|
655 |
|
7 |
|a History
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Aaboe, Asger.
|t Episodes from the Early History of Mathematics.
|d Washington : Mathematical Association of America, ©2014
|z 9780883856130
|
830 |
|
0 |
|a Anneli Lax new mathematical library.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450354
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3330412
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 450354
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7349798
|
994 |
|
|
|a 92
|b IZTAP
|