Cargando…

Continued Fractions /

Continued fractions were studied by the great mathematicians of the seventeenth and eighteenth centuries and are a subject of active investigation today. Fractions of this form provide much insight into many mathematical problems #x97; particularly into the nature of numbers #x97; and the theory of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Olds, C. D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Anneli Lax new mathematical library.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn775428836
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 111006s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d N$T  |d OCLCQ  |d OCLCF  |d CAMBR  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d RDF  |d OCLCQ  |d OCLCO 
019 |a 903621760  |a 923220680  |a 929120429  |a 1087446483  |a 1264850446  |a 1297493072  |a 1297764584 
020 |a 9780883859261  |q (electronic bk.) 
020 |a 0883859262  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043072829 
029 1 |a DEBBG  |b BV043624310 
029 1 |a DEBSZ  |b 421420871 
029 1 |a DEBSZ  |b 449725545 
029 1 |a GBVCP  |b 803884036 
035 |a (OCoLC)775428836  |z (OCoLC)903621760  |z (OCoLC)923220680  |z (OCoLC)929120429  |z (OCoLC)1087446483  |z (OCoLC)1264850446  |z (OCoLC)1297493072  |z (OCoLC)1297764584 
050 4 |a QA295 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.81 
049 |a UAMI 
100 1 |a Olds, C. D. 
245 1 0 |a Continued Fractions /  |c C.D. Olds. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Anneli Lax New Mathematical Library ;  |v v. 9 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Front Cover -- Continued Fractions -- Copyright Page -- Contents -- Preface -- Chapter 1. Expansion of Rational Fractions -- 1.1 Introduction -- 1.2 Definitions and Notation -- 1.3 Expansion of Rational Fractions -- 1.4 Expansion of Rational Fractions (General Discussion) -- 1.5 Convergents and Their Properties -- 1.6 Differences of Convergents -- 1.7 Some Historical Comments -- Chapter 2. Diophantine Equations -- 2.1 Introduction -- 2.2 The Method Used Extensively by Euler -- 2.3 The Indeterminate Equation ax â€? by = ±1 
505 8 |a 2.4 The General Solution of ax -- by = c, (a, b) = 12.5 The General Solution of ax + by = c, (a, b) = 1 -- 2.6 The General Solution of Ax ± By = ±C -- 2.7 Sailors, Coconuts, and Monkeys -- Chapter 3. Expansion of Irrational Numbers -- 3.1 Introduction -- 3.2 Preliminary Examples -- 3.3 Convergents -- 3.4 Additional Theorems on Convergents -- 3.5 Some Notions of a Limit -- 3.6 Infinite Continued Fractions -- 3.7 Approximation Theorems -- 3.8 Geometrical Interpretation of Continued Fractions -- 3.9 Solution of the Equation x2 = ax + 1 -- 3.10 Fibonacci Numbers 
505 8 |a 3.11 A Method for Calculating LogarithmsChapter 4. Periodic Continued Fractions -- 4.1 Introduction -- 4.2 Purely Periodic Continued Fractions -- 4.3 Quadratic Irrationals -- 4.4 Reduced Quadratic Irrationals -- 4.5 Converse of Theorem 4.1 -- 4.6 Lagrangeâ€?s Theorem -- 4.7 The Continued Fraction for N -- 4.8 Pellâ€?s Equation, x2 â€? Ny2 = ±1 -- 4.9 How to Obtain Other Solutions of Pellâ€?s Equation -- Chapter 5. Epilogue -- 5.1 Introduction -- 5.2 Statement of the Problem -- 5.3 Hurwitzâ€? Theorem -- 5.4 Conclusion 
505 8 |a Appendix I. Proof That x2 -- 3y2 = â€? 1 Has No Integral SolutionsAppendix II. Some Miscellaneous Expansions -- Solutions to Problems -- References -- Index 
520 |a Continued fractions were studied by the great mathematicians of the seventeenth and eighteenth centuries and are a subject of active investigation today. Fractions of this form provide much insight into many mathematical problems #x97; particularly into the nature of numbers #x97; and the theory of continued fractions is a powerful tool in number theory and other mathematical disciplines. The author of this book presents an easy-going discussion of simple continued fractions, beginning with an account of how rational fractions can be expanded into continued fractions. Gradually the reader is introduced to such topics as the application of continued fractions to the solution of Diophantine equations, and the expansion of irrational numbers into infinite continued fractions. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Continued fractions. 
650 6 |a Fractions continues. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Continued fractions  |2 fast 
776 0 8 |i Print version:  |a Olds, Carl D.  |t Continued Fractions.  |d Washington : Mathematical Association of America, ©2014  |z 9780883856093 
830 0 |a Anneli Lax new mathematical library. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=450353  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330383 
938 |a EBSCOhost  |b EBSC  |n 450353 
938 |a YBP Library Services  |b YANK  |n 7349796 
994 |a 92  |b IZTAP