Cargando…

From Pythagoras to Einstein /

The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Friedrichs, K. O.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Colección:Anneli Lax new mathematical library.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn775428756
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 111024s2012 enk o 001 0 eng d
040 |a COO  |b eng  |e pn  |c COO  |d N$T  |d OCLCQ  |d OCLCF  |d CAMBR  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AGLDB  |d ZCU  |d MERUC  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d AJS  |d OCLCO  |d RDF  |d OCLCQ 
019 |a 903621764  |a 923220585  |a 929120327  |a 1011015038 
020 |a 9780883859315  |q (electronic bk.) 
020 |a 0883859319  |q (electronic bk.) 
029 1 |a DEBBG  |b BV043072912 
029 1 |a DEBBG  |b BV043624308 
029 1 |a DEBSZ  |b 42141815X 
029 1 |a DEBSZ  |b 449725529 
029 1 |a GBVCP  |b 803883951 
035 |a (OCoLC)775428756  |z (OCoLC)903621764  |z (OCoLC)923220585  |z (OCoLC)929120327  |z (OCoLC)1011015038 
050 4 |a QA460.P8 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 4 |a 516.83 
049 |a UAMI 
100 1 |a Friedrichs, K. O. 
245 1 0 |a From Pythagoras to Einstein /  |c K.O. Friedrichs. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Anneli Lax New Mathematical Library ;  |v v. 16 
500 |a Title from publishers bibliographic system (viewed on 30 Jan 2012). 
505 0 |a Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover 
520 |a The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterpreted to play the role of one of the main characters in the special theory of relativity. The first four chapters are easily accessible to high school sophomores or juniors. The remaining part of the book may be a little difficult for students who never studied physics, although the author actually employs only the notion of impact and presupposes no background in physics. With the aid of the vector geometry introduced earlier, he leads the reader from the impact conservation laws to the famous formula e=mc^2. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Pythagorean theorem. 
650 0 |a Dynamics. 
650 0 |a Relativity (Physics) 
650 0 |a Vector analysis. 
650 6 |a Théorème de Pythagore. 
650 6 |a Dynamique. 
650 6 |a Relativité (Physique) 
650 6 |a Analyse vectorielle. 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a Dynamics.  |2 fast  |0 (OCoLC)fst00900295 
650 7 |a Pythagorean theorem.  |2 fast  |0 (OCoLC)fst01084728 
650 7 |a Relativity (Physics)  |2 fast  |0 (OCoLC)fst01093604 
650 7 |a Vector analysis.  |2 fast  |0 (OCoLC)fst01164651 
776 0 8 |i Print version:  |a Friedrichs, K.O.  |t From Pythagoras to Einstein.  |d Washington : Mathematical Association of America, ©2014  |z 9780883856161 
830 0 |a Anneli Lax new mathematical library. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452150  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330381 
938 |a EBSCOhost  |b EBSC  |n 452150 
938 |a YBP Library Services  |b YANK  |n 7349801 
994 |a 92  |b IZTAP