|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn775428756 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
111024s2012 enk o 001 0 eng d |
040 |
|
|
|a COO
|b eng
|e pn
|c COO
|d N$T
|d OCLCQ
|d OCLCF
|d CAMBR
|d YDXCP
|d OCLCQ
|d EBLCP
|d DEBSZ
|d OCLCQ
|d AGLDB
|d ZCU
|d MERUC
|d OCLCQ
|d VTS
|d ICG
|d OCLCQ
|d STF
|d DKC
|d OCLCQ
|d AJS
|d OCLCO
|d RDF
|d OCLCQ
|
019 |
|
|
|a 903621764
|a 923220585
|a 929120327
|a 1011015038
|
020 |
|
|
|a 9780883859315
|q (electronic bk.)
|
020 |
|
|
|a 0883859319
|q (electronic bk.)
|
029 |
1 |
|
|a DEBBG
|b BV043072912
|
029 |
1 |
|
|a DEBBG
|b BV043624308
|
029 |
1 |
|
|a DEBSZ
|b 42141815X
|
029 |
1 |
|
|a DEBSZ
|b 449725529
|
029 |
1 |
|
|a GBVCP
|b 803883951
|
035 |
|
|
|a (OCoLC)775428756
|z (OCoLC)903621764
|z (OCoLC)923220585
|z (OCoLC)929120327
|z (OCoLC)1011015038
|
050 |
|
4 |
|a QA460.P8
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.83
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Friedrichs, K. O.
|
245 |
1 |
0 |
|a From Pythagoras to Einstein /
|c K.O. Friedrichs.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Anneli Lax New Mathematical Library ;
|v v. 16
|
500 |
|
|
|a Title from publishers bibliographic system (viewed on 30 Jan 2012).
|
505 |
0 |
|
|a Front Cover -- From Pythagoras to Einstein -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. The Pythagorean Theorem -- Chapter 2. Signed Numbers -- Chapter 3. Vectors -- Chapter 4. Components and Coordinates. Spaces of Higher Dimension -- Chapter 5. Momentum and Energy. Elastic Impact -- Chapter 6. Inelastic Impact -- Chapter 7. Space and Time Measurement in the Special Theory of Relativity -- Chapter 8. Momentum and Energy in the Special Theory of Relativity. Impact -- back cover
|
520 |
|
|
|a The main thread running through this somewhat unorthodox approach to the special theory of relativity is the Pythagorean theorem. It appears in its most elementary geometric form in the very beginning of this monograph. Then it reappears in algebraic garb, it is further modified and finally reinterpreted to play the role of one of the main characters in the special theory of relativity. The first four chapters are easily accessible to high school sophomores or juniors. The remaining part of the book may be a little difficult for students who never studied physics, although the author actually employs only the notion of impact and presupposes no background in physics. With the aid of the vector geometry introduced earlier, he leads the reader from the impact conservation laws to the famous formula e=mc^2.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Pythagorean theorem.
|
650 |
|
0 |
|a Dynamics.
|
650 |
|
0 |
|a Relativity (Physics)
|
650 |
|
0 |
|a Vector analysis.
|
650 |
|
6 |
|a Théorème de Pythagore.
|
650 |
|
6 |
|a Dynamique.
|
650 |
|
6 |
|a Relativité (Physique)
|
650 |
|
6 |
|a Analyse vectorielle.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Dynamics.
|2 fast
|0 (OCoLC)fst00900295
|
650 |
|
7 |
|a Pythagorean theorem.
|2 fast
|0 (OCoLC)fst01084728
|
650 |
|
7 |
|a Relativity (Physics)
|2 fast
|0 (OCoLC)fst01093604
|
650 |
|
7 |
|a Vector analysis.
|2 fast
|0 (OCoLC)fst01164651
|
776 |
0 |
8 |
|i Print version:
|a Friedrichs, K.O.
|t From Pythagoras to Einstein.
|d Washington : Mathematical Association of America, ©2014
|z 9780883856161
|
830 |
|
0 |
|a Anneli Lax new mathematical library.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=452150
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3330381
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 452150
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7349801
|
994 |
|
|
|a 92
|b IZTAP
|