Cargando…

Introduction to Hida distributions /

This book provides the mathematical definition of white noise and gives its significance. White noise is in fact a typical class of idealized elemental (infinitesimal) random variables. Thus, we are naturally led to have functionals of such elemental random variables that is white noise. This book a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Si, Si
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, NJ : World Scientific, ©2012.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ia 4500
001 EBSCO_ocn774956313
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 120127s2012 si a ob 001 0 eng d
010 |z  2011293883 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d ITD  |d N$T  |d NTE  |d E7B  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d OSU  |d OCLCQ  |d OCLCF  |d EBLCP  |d MEAUC  |d OCLCQ  |d AZK  |d LOA  |d JBG  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d OTZ  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d COCUF  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d LEAUB  |d OCLCQ  |d UKCRE  |d AJS  |d OCLCO  |d OCLCQ  |d TUHNV  |d INARC 
066 |c (S 
019 |a 858228489  |a 961491253  |a 962716285  |a 966206839  |a 988451398  |a 991920735  |a 994988998  |a 1037730106  |a 1038637809  |a 1055383591  |a 1058115165  |a 1062908735  |a 1081195175  |a 1086561780  |a 1153507996  |a 1228603384  |a 1243620283  |a 1393052926 
020 |a 9812836896  |q (electronic bk.) 
020 |a 9789812836892  |q (electronic bk.) 
020 |z 9812836888 
020 |z 9789812836885 
029 1 |a AU@  |b 000052893976 
029 1 |a CHNEW  |b 000618338 
029 1 |a DEBBG  |b BV043117063 
029 1 |a DEBBG  |b BV044161637 
029 1 |a DEBSZ  |b 372903932 
029 1 |a DEBSZ  |b 393923096 
029 1 |a DEBSZ  |b 421458682 
029 1 |a DEBSZ  |b 454996950 
029 1 |a NZ1  |b 15908775 
035 |a (OCoLC)774956313  |z (OCoLC)858228489  |z (OCoLC)961491253  |z (OCoLC)962716285  |z (OCoLC)966206839  |z (OCoLC)988451398  |z (OCoLC)991920735  |z (OCoLC)994988998  |z (OCoLC)1037730106  |z (OCoLC)1038637809  |z (OCoLC)1055383591  |z (OCoLC)1058115165  |z (OCoLC)1062908735  |z (OCoLC)1081195175  |z (OCoLC)1086561780  |z (OCoLC)1153507996  |z (OCoLC)1228603384  |z (OCoLC)1243620283  |z (OCoLC)1393052926 
050 4 |a QA274.29  |b .S5 2012 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.22  |2 22 
049 |a UAMI 
100 1 |a Si, Si. 
245 1 0 |a Introduction to Hida distributions /  |c Si Si. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2012. 
300 |a 1 online resource (xiii, 253 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
504 |a Includes bibliographical references (pages 243-249) and index. 
505 0 |a Preliminaries and discrete parameter white noise -- Continuous parameter white noise -- White noise functionals -- White noise analysis -- Stochastic integral -- Gaussian and Poisson noises -- Multiple Markov properties of generalized Gaussian processes and generalizations -- Classification of noises -- Lévy processes. 
520 |a This book provides the mathematical definition of white noise and gives its significance. White noise is in fact a typical class of idealized elemental (infinitesimal) random variables. Thus, we are naturally led to have functionals of such elemental random variables that is white noise. This book analyzes those functionals of white noise, particularly the generalized ones called Hida distributions, and highlights some interesting future directions. The main part of the book involves infinite dimensional differential and integral calculus based on the variable which is white noise. The present book can be used as a supplementary book to Lectures on White Noise Functionals published in 2008, with detailed background provided. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a White noise theory. 
650 0 |a Stochastic analysis. 
650 0 |a Stochastic differential equations. 
650 4 |a Stochastic analysis. 
650 4 |a Stochastic differential equations. 
650 4 |a White noise theory. 
650 6 |a Théorie du bruit blanc. 
650 6 |a Analyse stochastique. 
650 6 |a Équations différentielles stochastiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Stochastic analysis.  |2 fast  |0 (OCoLC)fst01133499 
650 7 |a Stochastic differential equations.  |2 fast  |0 (OCoLC)fst01133506 
650 7 |a White noise theory.  |2 fast  |0 (OCoLC)fst01744588 
776 0 8 |i Print version:  |a Si, Si.  |t Introduction to Hida distributions.  |d Singapore : World Scientific, ©2012  |z 9812836888  |w (DLC) 2011293883  |w (OCoLC)311230307 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=426454  |z Texto completo 
880 8 |6 505-00/(S  |a 2.5 Stationary generalized stochastic processes3. White Noise Functionals; 3.1 In line with standard analysis; 3.2 White noise functionals; 3.3 Infinite dimensional spaces spanned by generalized linear functionals of white noise; 3.4 Some of the details of quadratic functionals of white noise; 3.5 The T -transform and the S-transform; 3.6 White noise (t) related to δ-function; 3.7 Infinite dimensional space generated by Hermite polynomials in (t)'s of higher degree; 3.8 Generalized white noise functionals; 3.9 Approximation to Hida distributions. 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL840715 
938 |a ebrary  |b EBRY  |n ebr10524572 
938 |a EBSCOhost  |b EBSC  |n 426454 
938 |a YBP Library Services  |b YANK  |n 7364402 
938 |a Internet Archive  |b INAR  |n introductiontohi0000sisi 
994 |a 92  |b IZTAP