|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBSCO_ocn773040607 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
120117s2012 enk ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d YDXCP
|d E7B
|d OCLCQ
|d CAMBR
|d OSU
|d OCLCF
|d OCLCQ
|d YDX
|d HEBIS
|d OCLCO
|d BUF
|d OCLCQ
|d TKN
|d OCLCQ
|d VLY
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 982877160
|a 983196023
|a 1162083418
|
020 |
|
|
|a 9781139190220
|q (electronic bk.)
|
020 |
|
|
|a 1139190229
|q (electronic bk.)
|
020 |
|
|
|a 9780511978111
|q (electronic bk.)
|
020 |
|
|
|a 0511978111
|q (electronic bk.)
|
020 |
|
|
|a 9781139185325
|
020 |
|
|
|a 1139185322
|
020 |
|
|
|a 1139188917
|
020 |
|
|
|a 9781139188913
|
020 |
|
|
|a 9786613378408
|
020 |
|
|
|a 6613378402
|
020 |
|
|
|a 1139187635
|
020 |
|
|
|a 9781139187633
|
020 |
|
|
|a 1139183001
|
020 |
|
|
|a 9781139183000
|
020 |
|
|
|z 9780521516952
|
020 |
|
|
|z 0521516951
|
035 |
|
|
|a (OCoLC)773040607
|z (OCoLC)982877160
|z (OCoLC)983196023
|z (OCoLC)1162083418
|
050 |
|
4 |
|a QA612.7
|b .S56 2012eb
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.62
|2 23
|
084 |
|
|
|a MAT038000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Simpson, Carlos,
|d 1962-
|
245 |
1 |
0 |
|a Homotopy theory of higher categories /
|c Carlos Simpson.
|
260 |
|
|
|a Cambridge ;
|a New York :
|b Cambridge University Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (xviii, 634 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a New mathematical monographs ;
|v 19
|
504 |
|
|
|a Includes bibliographical references (pages 618-629) and index.
|
520 |
|
|
|a "The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others"--
|c Provided by publisher
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Part I. Higher Categories: 1. History and motivation; 2. Strict n-categories; 3. Fundamental elements of n-categories; 4. Operadic approaches; 5. Simplicial approaches; 6. Weak enrichment over a cartesian model category: an introduction -- Part II. Categorical Preliminaries: 7. Model categories; 8. Cell complexes in locally presentable categories; 9. Direct left Bousfield localization -- Part III. Generators and Relations: 10. Precategories; 11. Algebraic theories in model categories; 12. Weak equivalences; 13. Cofibrations; 14. Calculus of generators and relations; 15. Generators and relations for Segal categories -- Part IV. The Model Structure: 186 Sequentially free precategories; 17. Products; 18. Intervals; 19. The model category of M-enriched precategories -- Part V. Higher Category Theory: 20. Iterated higher categories; 21. Higher categorical techniques; 22. Limits of weak enriched categories; 23. Stabilization.
|
546 |
|
|
|a English.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Homotopy theory.
|
650 |
|
0 |
|a Categories (Mathematics)
|
650 |
|
6 |
|a Homotopie.
|
650 |
|
6 |
|a Catégories (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Topology.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Categories (Mathematics)
|2 fast
|0 (OCoLC)fst00849000
|
650 |
|
7 |
|a Homotopy theory.
|2 fast
|0 (OCoLC)fst00959852
|
650 |
|
7 |
|a Homotopietheorie
|2 gnd
|
650 |
|
7 |
|a Kategorientheorie
|2 gnd
|
776 |
0 |
8 |
|i Print version:
|a Simpson, Carlos, 1962-
|t Homotopy theory of higher categories.
|d Cambridge ; New York : Cambridge University Press, 2012
|z 9780521516952
|w (DLC) 2011026520
|w (OCoLC)743431958
|
830 |
|
0 |
|a New mathematical monographs ;
|v 19.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=409043
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH13438628
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10520659
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 409043
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7236319
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7308077
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7408120
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7571837
|
994 |
|
|
|a 92
|b IZTAP
|