Cargando…

Lectures on the Topology of 3-Manifolds : an Introduction to the Casson Invariant.

This textbook, now in its second revised and extended edition, introduces the topology of 3- and 4-dimensional manifolds. It also considers new developments especially related to the Heegaard Floer and contact homology. The book is accessible to graduate students in mathematics and theoretical physi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Saveliev, Nikolai
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2011.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn772845181
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120116s2011 gw o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d DEBBG  |d DEBSZ  |d OCLCQ  |d VTS  |d DEHBZ  |d STF  |d OCLCQ  |d AJS  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9783110250367  |q (electronic bk.) 
020 |a 3110250365  |q (electronic bk.) 
029 1 |a CHBIS  |b 010396651 
029 1 |a CHVBK  |b 331235277 
029 1 |a DEBBG  |b BV042348145 
029 1 |a DEBBG  |b BV043032372 
029 1 |a DEBSZ  |b 421457228 
029 1 |a DEBSZ  |b 431083584 
029 1 |a DEBSZ  |b 472586939 
029 1 |a DEBSZ  |b 478280955 
035 |a (OCoLC)772845181 
050 4 |a QA613.2 .S288 2011 
072 7 |a MAT  |x 038000  |2 bisacsh 
082 0 4 |a 514.34 
084 |a SK 300  |2 rvk 
049 |a UAMI 
100 1 |a Saveliev, Nikolai. 
245 1 0 |a Lectures on the Topology of 3-Manifolds :  |b an Introduction to the Casson Invariant. 
250 |a 2nd ed. 
260 |a Berlin :  |b De Gruyter,  |c 2011. 
300 |a 1 online resource (219 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Preface; Introduction; Glossary; 1 Heegaard splittings; 1.1 Introduction; 1.2 Existence of Heegaard splittings; 1.3 Stable equivalence of Heegaard splittings; 1.4 The mapping class group; 1.5 Manifolds of Heegaard genus <_ 1; 1.6 Seifert manifolds; 1.7 Heegaard diagrams; 1.8 Exercises; 2 Dehn surgery; 2.1 Knots and links in 3-manifolds; 2.2 Surgery on links in S3; 2.3 Surgery description of lens spaces and Seifert manifolds; 2.4 Surgery and 4-manifolds; 2.5 Exercises; 3 Kirby calculus; 3.1 The linking number; 3.2 Kirby moves; 3.3 The linking matrix; 3.4 Reversing orientation; 3.5 Exercises. 
505 8 |a 4 Even surgeries4.1 Exercises; 5 Review of 4-manifolds; 5.1 Definition of the intersection form; 5.2 The unimodular integral forms; 5.3 Four-manifolds and intersection forms; 5.4 Exercises; 6 Four-manifolds with boundary; 6.1 The intersection form; 6.2 Homology spheres via surgery on knots; 6.3 Seifert homology spheres; 6.4 The Rohlin invariant; 6.5 Exercises; 7 Invariants of knots and links; 7.1 Seifert surfaces; 7.2 Seifert matrices; 7.3 The Alexander polynomial; 7.4 Other invariants from Seifert surfaces; 7.5 Knots in homology spheres; 7.6 Boundary links and the Alexander polynomial. 
505 8 |a 7.7 Exercises8 Fibered knots; 8.1 The definition of a fibered knot; 8.2 The monodromy; 8.3 More about torus knots; 8.4 Joins; 8.5 The monodromy of torus knots; 8.6 Open book decompositions; 8.7 Exercises; 9 The Arf-invariant; 9.1 The Arf-invariant of a quadratic form; 9.2 The Arf-invariant of a knot; 9.3 Exercises; 10 Rohlin's theorem; 10.1 Characteristic surfaces; 10.2 The definition of q~; 10.3 Representing homology classes by surfaces; 11 The Rohlin invariant; 11.1 Definition of the Rohlin invariant; 11.2 The Rohlin invariant of Seifert spheres. 
505 8 |a 11.3 A surgery formula for the Rohlin invariant11.4 The homology cobordism group; 11.5 Exercises; 12 The Casson invariant; 12.1 Exercises; 13 The group SU (2); 13.1 Exercises; 14 Representation spaces; 14.1 The topology of representation spaces; 14.2 Irreducible representations; 14.3 Representations of free groups; 14.4 Representations of surface groups; 14.5 Representations for Seifert homology spheres; 14.6 Exercises; 15 The local properties of representation spaces; 15.1 Exercises; 16 Casson's invariant for Heegaard splittings; 16.1 The intersection product; 16.2 The orientations. 
505 8 |a 16.3 Independence of Heegaard splitting16.4 Exercises; 17 Casson's invariant for knots; 17.1 Preferred Heegaard splittings; 17.2 The Casson invariant for knots; 17.3 The difference cycle; 17.4 The Casson invariant for boundary links; 17.5 The Casson invariant of a trefoil; 18 An application of the Casson invariant; 18.1 Triangulating 4-manifolds; 18.2 Higher-dimensional manifolds; 18.3 Exercises; 19 The Casson invariant of Seifert manifolds; 19.1 The space R(S (p, q, r)); 19.2 Calculation of the Casson invariant; 19.3 Exercises; Conclusion; Bibliography; Index. 
520 |a This textbook, now in its second revised and extended edition, introduces the topology of 3- and 4-dimensional manifolds. It also considers new developments especially related to the Heegaard Floer and contact homology. The book is accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic topology, including the fundamental group, basic homology theory, and Poincaré duality on manifolds. 
588 0 |a Print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Three-manifolds (Topology) 
650 6 |a Variétés topologiques à 3 dimensions. 
650 7 |a MATHEMATICS  |x Topology.  |2 bisacsh 
650 7 |a Three-manifolds (Topology)  |2 fast 
776 0 8 |i Print version:  |a Saveliev, Nikolai.  |t Lectures on the Topology of 3-Manifolds : An Introduction to the Casson Invariant.  |d Berlin : De Gruyter, ©2011  |z 9783110250350 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=430060  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL835444 
938 |a EBSCOhost  |b EBSC  |n 430060 
938 |a YBP Library Services  |b YANK  |n 7349047 
994 |a 92  |b IZTAP