Cargando…

Pseudodifferential and Singular Integral Operators : an Introduction with Applications.

This book provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their application to partial differential equations. It presents the necessary material on Fourier transformation and distribution theory, the basic calculus of pseudodifferential...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Abels, H. (Helmut)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2011.
Colección:De Gruyter graduate.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn772845179
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120116s2011 gw ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d DEBBG  |d DEBSZ  |d E7B  |d YDXCP  |d IDEBK  |d OCLCQ  |d MERUC  |d ICG  |d COCUF  |d LOA  |d K6U  |d PIFAG  |d FVL  |d ZCU  |d OCLCQ  |d DEGRU  |d OCLCQ  |d VTS  |d OCLCQ  |d STF  |d UMR  |d LEAUB  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d U9X  |d AUD  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 785776496  |a 980553378  |a 980836634  |a 987647935  |a 992084732 
020 |a 9783110250312  |q (electronic bk.) 
020 |a 3110250314  |q (electronic bk.) 
020 |z 9783110250305  |q (hardcover alk. paper) 
029 1 |a AU@  |b 000051449991 
029 1 |a CHBIS  |b 010396649 
029 1 |a CHVBK  |b 331230526 
029 1 |a DEBBG  |b BV042348143 
029 1 |a DEBBG  |b BV043032371 
029 1 |a DEBSZ  |b 421457236 
029 1 |a DEBSZ  |b 431083576 
029 1 |a DEBSZ  |b 472586912 
029 1 |a DEBSZ  |b 478280947 
035 |a (OCoLC)772845179  |z (OCoLC)785776496  |z (OCoLC)980553378  |z (OCoLC)980836634  |z (OCoLC)987647935  |z (OCoLC)992084732 
050 4 |a QA329.7 .A24 2012 
072 7 |a MAT  |x 040000  |2 bisacsh 
082 0 4 |a 515.94  |a 515/.94 
084 |a SK 620  |2 rvk 
049 |a UAMI 
100 1 |a Abels, H.  |q (Helmut) 
245 1 0 |a Pseudodifferential and Singular Integral Operators :  |b an Introduction with Applications. 
260 |a Berlin :  |b De Gruyter,  |c 2011. 
300 |a 1 online resource (232 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter graduate lectures 
505 0 |a Preface; 1 Introduction; I Fourier Transformation and Pseudodifferential Operators; 2 Fourier Transformation and Tempered Distributions; 2.1 Definition and Basic Properties; 2.2 Rapidly Decreasing Functions -- P (Rn); 2.3 Inverse Fourier Transformation and Plancherel's Theorem; 2.4 Tempered Distributions and Fourier Transformation; 2.5 Fourier Transformation and Convolution of Tempered Distributions; 2.6 Convolution on on P'(Rn) and Fundamental Solutions; 2.7 Sobolev and Bessel Potential Spaces; 2.8 Vector-Valued Fourier-Transformation; 2.9 Final Remarks and Exercises; 2.9.1 Further Reading. 
505 8 |a 2.9.2 Exercises3 Basic Calculus of Pseudodifferential Operators on Rn; 3.1 Symbol Classes and Basic Properties; 3.2 Composition of Pseudodifferential Operators: Motivation; 3.3 Oscillatory Integrals; 3.4 Double Symbols; 3.5 Composition of Pseudodifferential Operators; 3.6 Application: Elliptic Pseudodifferential Operators and Parametrices; 3.7 Boundedness on Cb8 (Rn) and Uniqueness of the Symbol; 3.8 Adjoints of Pseudodifferential Operators and Operators in (x, y)-Form; 3.9 Boundedness on L2(Rn) and L2-Bessel Potential Spaces; 3.10 Outlook: Coordinate Transformations and PsDOs on Manifolds. 
505 8 |a 3.11 Final Remarks and Exercises3.11.1 Further Reading; 3.11.2 Exercises; II Singular Integral Operators; 4 Translation Invariant Singular Integral Operators; 4.1 Motivation; 4.2 Main Result in the Translation Invariant Case; 4.3 Calderón-Zygmund Decomposition and the Maximal Operator; 4.4 Proof of the Main Result in the Translation Invariant Case; 4.5 Examples of Singular Integral Operators; 4.6 Mikhlin Multiplier Theorem; 4.7 Outlook: Hardy spaces and BMO; 4.8 Final Remarks and Exercises; 4.8.1 Further Reading; 4.8.2 Exercises; 5 Non-Translation Invariant Singular Integral Operators. 
505 8 |a 5.1 Motivation5.2 Extension to Non-Translation Invariant and Vector-Valued Singular Integral Operators; 5.3 Hilbert-Space-Valued Mikhlin Multiplier Theorem; 5.4 Kernel Representation of a Pseudodifferential Operator; 5.5 Consequences of the Kernel Representation; 5.6 Final Remarks and Exercises; 5.6.1 Further Reading; 5.6.2 Exercises; III Applications to Function Space and Differential Equations; 6 Introduction to Besov and Bessel Potential Spaces; 6.1 Motivation; 6.2 A Fourier-Analytic Characterization of Holder Continuity. 
505 8 |a 6.3 Bessel Potential and Besov Spaces -- Definitions and Basic Properties6.4 Sobolev Embeddings; 6.5 Equivalent Norms; 6.6 Pseudodifferential Operators on Besov Spaces; 6.7 Final Remarks and Exercises; 6.7.1 Further Reading; 6.7.2 Exercises; 7 Applications to Elliptic and Parabolic Equations; 7.1 Applications of the Mikhlin Multiplier Theorem; 7.1.1 Resolvent of the Laplace Operator; 7.1.2 Spectrum of Multiplier Operators with Homogeneous Symbols; 7.1.3 Spectrum of a Constant Coefficient Differential Operator; 7.2 Applications of the Hilbert-Space-Valued Mikhlin Multiplier Theorem. 
500 |a 7.2.1 Maximal Regularity of Abstract ODEs in Hilbert Spaces. 
520 |a This book provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their application to partial differential equations. It presents the necessary material on Fourier transformation and distribution theory, the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space, an introduction to the theory of singular integral operators, the modern theory of Besov and Bessel potential spaces, and several applications to wellposedness and regularity question for elliptic and parabolic equations. The basic notation of functio. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Pseudodifferential operators. 
650 0 |a Integral operators. 
650 6 |a Opérateurs pseudo-différentiels. 
650 6 |a Opérateurs intégraux. 
650 7 |a MATHEMATICS  |x Complex Analysis.  |2 bisacsh 
650 7 |a Integral operators.  |2 fast  |0 (OCoLC)fst00975514 
650 7 |a Pseudodifferential operators.  |2 fast  |0 (OCoLC)fst01080853 
650 7 |a Singulärer Integraloperator  |2 gnd 
650 7 |a Pseudodifferentialoperator  |2 gnd 
776 0 8 |i Print version:  |a Abels, Helmut.  |t Pseudodifferential and Singular Integral Operators : An Introduction with Applications.  |d Berlin : De Gruyter, ©2011  |z 9783110250305 
830 0 |a De Gruyter graduate. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=430059  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25310579 
938 |a De Gruyter  |b DEGR  |n 9783110250312 
938 |a EBL - Ebook Library  |b EBLB  |n EBL835443 
938 |a ebrary  |b EBRY  |n ebr10527878 
938 |a EBSCOhost  |b EBSC  |n 430059 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28650973 
938 |a YBP Library Services  |b YANK  |n 7349046 
994 |a 92  |b IZTAP