Cargando…

Optimal Control of ODEs and DAEs.

The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gerdts, Matthias
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 2012.
Colección:De Gruyter textbook.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn772845160
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120116s2012 gw ob 001 0 eng d
010 |z  2011017050 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDXCP  |d N$T  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d DEBBG  |d DEBSZ  |d OCLCO  |d E7B  |d IDEBK  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AGLDB  |d OCLCQ  |d VTS  |d DEHBZ  |d TKN  |d STF  |d M8D  |d OCLCQ  |d VLY  |d AJS  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 785776495  |a 1086913625  |a 1162217595  |a 1264900657  |a 1297287703  |a 1297742375 
020 |a 9783110249996  |q (electronic bk.) 
020 |a 3110249995  |q (electronic bk.) 
020 |z 9783110249958  |q (alk. paper) 
029 1 |a AU@  |b 000051449889 
029 1 |a CHBIS  |b 010396642 
029 1 |a CHVBK  |b 331227924 
029 1 |a DEBBG  |b BV042348132 
029 1 |a DEBBG  |b BV043075834 
029 1 |a DEBSZ  |b 421457244 
029 1 |a DEBSZ  |b 43108355X 
029 1 |a DEBSZ  |b 478280912 
035 |a (OCoLC)772845160  |z (OCoLC)785776495  |z (OCoLC)1086913625  |z (OCoLC)1162217595  |z (OCoLC)1264900657  |z (OCoLC)1297287703  |z (OCoLC)1297742375 
050 4 |a QA402.3 .G444 2012 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.642 
084 |a SK 880  |2 rvk 
049 |a UAMI 
100 1 |a Gerdts, Matthias. 
245 1 0 |a Optimal Control of ODEs and DAEs. 
260 |a Berlin :  |b De Gruyter,  |c 2012. 
300 |a 1 online resource (468 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter textbook 
505 0 |a Preface; 1 Introduction; 1.1 DAE Optimal Control Problems; 1.1.1 Perturbation Index; 1.1.2 Consistent Initial Values; 1.1.3 Index Reduction and Stabilization; 1.2 Transformation Techniques; 1.2.1 Transformation to Fixed Time Interval; 1.2.2 Transformation to Autonomous Problem; 1.2.3 Transformation of Tschebyscheff Problems; 1.2.4 Transformation of L 1 -Minimization Problems; 1.2.5 Transformation of Interior-Point Constraints; 1.3 Overview; 1.4 Exercises; 2 Infinite Optimization Problems; 2.1 Function Spaces; 2.1.1 Topological Spaces, Banach Spaces, and Hilbert Spaces. 
505 8 |a 2.1.2 Mappings and Dual Spaces2.1.3 Derivatives, Mean-Value Theorem, and Implicit Function Theorem; 2.1.4 Lp-Spaces, Wq; P-Spaces, Absolutely Continuous Functions, Functions of Bounded Variation; 2.2 The DAE Optimal Control Problem as an Infinite Optimization Problem; 2.3 Necessary Conditions for Infinite Optimization Problems; 2.3.1 Existence of a Solution; 2.3.2 Conic Approximation of Sets; 2.3.3 Separation Theorems; 2.3.4 First Order Necessary Optimality Conditions of Fritz John Type; 2.3.5 Constraint Qualifications and Karush-Kuhn-Tucker Conditions; 2.4 Exercises. 
505 8 |a 3 Local Minimum Principles3.1 Problems without Pure State and Mixed Control-State Constraints; 3.1.1 Representation of Multipliers; 3.1.2 Local Minimum Principle; 3.1.3 Constraint Qualifications and Regularity; 3.2 Problems with Pure State Constraints; 3.2.1 Representation of Multipliers; 3.2.2 Local Minimum Principle; 3.2.3 Finding Controls on Active State Constraint Arcs; 3.2.4 Jump Conditions for the Adjoint; 3.3 Problems with Mixed Control-State Constraints; 3.3.1 Representation of Multipliers; 3.3.2 Local Minimum Principle; 3.4 Summary of Local Minimum Principles for Index-One Problems. 
505 8 |a 3.5 Exercises4 Discretization Methods for ODEs and DAEs; 4.1 Discretization by One-Step Methods; 4.1.1 The Euler Method; 4.1.2 Runge-Kutta Methods; 4.1.3 General One-Step Method; 4.1.4 Consistency, Stability, and Convergence of One-Step Methods; 4.2 Backward Differentiation Formulas (BDF); 4.3 Linearized Implicit Runge-Kutta Methods; 4.4 Automatic Step-size Selection; 4.5 Computation of Consistent Initial Values; 4.5.1 Projection Method for Consistent Initial Values; 4.5.2 Consistent Initial Values via Relaxation; 4.6 Shooting Techniques for Boundary Value Problems. 
505 8 |a 4.6.1 Single Shooting Method using Projections4.6.2 Single Shooting Method using Relaxations; 4.6.3 Multiple Shooting Method; 4.7 Exercises; 5 Discretization of Optimal Control Problems; 5.1 Direct Discretization Methods; 5.1.1 Full Discretization Approach; 5.1.2 Reduced Discretization Approach; 5.1.3 Control Discretization; 5.2 A Brief Introduction to Sequential Quadratic Programming; 5.2.1 Lagrange-Newton Method; 5.2.2 Sequential Quadratic Programming (SQP); 5.3 Calculation of Derivatives for Reduced Discretization; 5.3.1 Sensitivity Equation Approach. 
500 |a 5.3.2 Adjoint Equation Approach: The Discrete Case. 
520 |a The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Control theory  |x Mathematical models. 
650 0 |a Mathematical optimization. 
650 6 |a Théorie de la commande  |x Modèles mathématiques. 
650 6 |a Optimisation mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Control theory  |x Mathematical models  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
776 0 8 |i Print version:  |a Gerdts, Matthias.  |t Optimal Control of ODEs and DAEs.  |d Berlin : De Gruyter, ©2012  |z 9783110249958 
830 0 |a De Gruyter textbook. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=430058  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL835434 
938 |a ebrary  |b EBRY  |n ebr10527877 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28650964 
938 |a YBP Library Services  |b YANK  |n 7349045 
994 |a 92  |b IZTAP